CO2 Absorption/Desorption on Gas-Liquid Membrane Contactors Using Monoethanolamine Solvent: Comparison of Porous and Composite Hollow Fibers

Article Preview

Abstract:

The operating efficiency of asymmetric porous and composite membranes with a thin non-porous selective layer was compared in the processes of CO2 absorption and desorption in gas-liquid membrane contactors using aqueous solutions of monoethanolamine (MEA) with low concentration (<14 %). Composite membranes were prepared by direct deposition of poly (1-trimethylsilyl-1-propyne) (PTMSP) in a hollow fiber membrane module. The effects of gas flow rate and MEA solvent linear velocity on the CO2 mass transfer were evaluated. Porous membranes were shown to be more effective in the process of CO2 absorption, because they allow to remove more than 90 % of CO2 from the gas mixture during one pass of the solvent through the contactor. Composite membranes were more promising for CO2 desorption, since they provide half as much of the solvent vapor losses with comparable desorbed CO2 fluxes (0.12-(STP)/(m2·h)). The contributions of membrane and liquid phase to the overall mass transfer resistance during the CO2 absorption process were estimated. It was demonstrated that deposition of a thin selective layer from a highly permeable PTMSP with a thickness of only 3 μm increases the membrane contribution to the total mass transfer resistance from 10-20 % to 60-80 %.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

321-335

Citation:

Online since:

October 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. Chabanon, D. Roizard, E. Favre, Membrane contactors for postcombustion carbon dioxide capture: a comparative study of wetting resistance on long time scales, Ind. Eng. Chem. Res. 50 (2011) 8237-8244.

DOI: 10.1021/ie200704h

Google Scholar

[2] S. Zhao, P.H.M. Feron, L. Deng, E. Favre, E. Chabanon, S. Yan, J. Hou, V. Chen, H. Qi, Status and progress of membrane contactors in post-combustion carbon capture: A state-of-the-art review of new developments, J. Membr. Sci. 511 (2016) 180-206.

DOI: 10.1016/j.memsci.2016.03.051

Google Scholar

[3] E. Chabanon, R. Bounaceur, C. Castel, S. Rode, D. Roizard, E. Favre, Pushing the limits of intensified CO2 post-combustion capture by gas–liquid absorption through a membrane contactor, Chem. Eng. Process.: Process Intensif. 91 (2015) 7-22.

DOI: 10.1016/j.cep.2015.03.002

Google Scholar

[4] A. Bello, R.O. Idem, Pathways for the formation of products of the oxidative degradation of CO2-loaded concentrated aqueous monoethanolamine solutions during CO2 absorption from flue gases, Ind. Eng. Chem. Res. 44 (2005) 945-969.

DOI: 10.1021/ie049329+

Google Scholar

[5] A. Bello, R.O. Idem, comprehensive study of the kinetics of the oxidative degradation of CO2 loaded and concentrated aqueous monoethanolamine (MEA) with and without sodium metavanadate during CO2 absorption from flue gases, Ind. Eng. Chem. Res. 45 (2006) 2569-2579.

DOI: 10.1021/ie050562x

Google Scholar

[6] C. Gouedard, D. Picq, F. Launay, P.-L. Carrette, Amine degradation in CO2 capture. I. A review, Int. J. Greenh. Gas Control. 10 (2012) 244-270.

DOI: 10.1016/j.ijggc.2012.06.015

Google Scholar

[7] S. Bazhenov, A. Rieder, B. Schallert, V. Vasilevsky, S. Unterberger, E. Grushevenko, V. Volkov, A. Volkov, Reclaiming of degraded MEA solutions by electrodialysis: Results of ED pilot campaign at post-combustion CO2 capture pilot plant, Int. J. Greenh. Gas Control. 42 (2015) 593-601.

DOI: 10.1016/j.ijggc.2015.09.015

Google Scholar

[8] J. Franco, D. deMontigny, S.E. Kentish, J.M. Perera, G.W. Stevens, Effect of amine degradation products on the membrane gas absorption process, Chem. Eng. Sci. 64 (2009) 4016-4023.

DOI: 10.1016/j.ces.2009.06.012

Google Scholar

[9] S.D. Bazhenov, E.S. Lyubimova, Gas-liquid membrane contactors for carbon dioxide capture from gaseous streams, Petrol. Chem. 56 (2016) 889-914.

DOI: 10.1134/s0965544116100029

Google Scholar

[10] E.G. Novitskii, V.P. Vasilevskii, V.I. Vasil'eva, E.A. Goleva, E.A. Grushevenko, A.V. Volkov, Effect of composition and structure of aqueous monoethanolamine solutions on carbon dioxide sorption and desorption in purification of gas mixtures, Russian J. Appl. Chem. 91 (2018) 813-821.

DOI: 10.1134/s1070427218050129

Google Scholar

[11] E.G. Novitskii, V.P. Vasilevskii, Е.А. Grushevenko, A.V. Volkov, V.V. Volkov, S.D. Bazhenov, Patent RF № 2656661 (2017).

Google Scholar

[12] G.A. Dibrov, V.V. Volkov, V.P. Vasilevsky, A.A. Shutova, S.D. Bazhenov, V.S. Khotimsky, A. van de Runstraat, E.L.V. Goetheer, A.V. Volkov, Robust high-permeance PTMSP composite membranes for CO2 membrane gas desorption at elevated temperatures and pressures, J. Membr. Sci. 470 (2014) 439-450.

DOI: 10.1016/j.memsci.2014.07.056

Google Scholar

[13] C.A. Scholes, S.E. Kentish, A. Qader, Membrane gas-solvent contactor pilot plant trials for post-combustion CO2 capture, Sep. Pur. Tech. 237 (2020) 116470.

DOI: 10.1016/j.seppur.2019.116470

Google Scholar

[14] C.A. Scholes, S.E. Kentish, G.W. Stevens, D. deMontigny, Comparison of thin film composite and microporous membrane contactors for CO2 absorption into monoethanolamine, I. J. Greenh. Gas Control. 42 (2015) 66-74.

DOI: 10.1016/j.ijggc.2015.07.032

Google Scholar

[15] C.A. Scholes, S.E. Kentish, G.W. Stevens, J. Jin, D. deMontigny, Thin-film composite membrane contactors for desorption of CO2 from monoethanolamine at elevated temperatures, Sep. Purif. Tech. 156 (2015) 841-847.

DOI: 10.1016/j.seppur.2015.11.010

Google Scholar

[16] H.J. Lee, M.K. Kim, J.H. Park, Decompression stripping of carbon dioxide from rich monoethanolamine through porous hydrophobic modified ceramic hollow fiber membrane contactor, Sep. Pur. Tech. 236 (2020) 116304.

DOI: 10.1016/j.seppur.2019.116304

Google Scholar

[17] S. Zhao, P.H. Feron, L. Deng, E. Favre, E. Chabanon, S. Yan, H. Qi, Status and progress of membrane contactors in post-combustion carbon capture: A state-of-the-art review of new developments, J. Membr. Sci. 511 (2016) 180-206.

DOI: 10.1016/j.memsci.2016.03.051

Google Scholar

[18] A. Malakhov, S. Bazhenov, V. Vasilevsky, I. Borisov, A. Ovcharova, A. Bildyukevich, V. Volkov, L. Giorno, A. Volkov Thin-film composite hollow fiber membranes for ethylene/ethane separation in gas-liquid membrane contactor, Sep. Pur. Tech. 219 (2019) 64-73.

DOI: 10.1016/j.seppur.2019.02.053

Google Scholar

[19] A. Ovcharova, V. Vasilevsky, I. Borisov, S. Bazhenov, A. Volkov, A. Bildyukevich, V. Volkov, Polysulfone porous hollow fiber membranes for ethylene-ethane separation in gas-liquid membrane contactor, Sep. Pur. Tech. 183 (2017) 162-172.

DOI: 10.1016/j.seppur.2017.03.023

Google Scholar

[20] K. Nagai, T. Masuda, T. Nakagava, B.D. Fridman, J. Pinnau, Poly [1– thrimethilsilyl)-1-propyne] and related pojymers: synthesis, properties and functions, Prog. Polym. Sci. 26 (2001) 721-798.

DOI: 10.1016/s0079-6700(01)00008-9

Google Scholar

[21] A. Trusov, S. Legkov, L.J.P. van den Broeke, E. Goetheer, V. Khotimsky, A. Volkov, Gas/liquid membrane contactors based on disubstituted polyacetylene for CO2 absorption liquid regeneration at high pressure and temperature, J. Membr. Sci. 383 (2011) 241-249.

DOI: 10.1016/j.memsci.2011.08.058

Google Scholar

[22] S. Khaisri, D. deMontigny, P. Tontiwachwuthikul, R. Jiraratananon, Comparing membrane resistance and absorption performance of three different membranes in a gas absorption membrane contactor, Sep. Pur. Tech. 65 (2009) 290-297.

DOI: 10.1016/j.seppur.2008.10.035

Google Scholar

[23] D. de Montigny, P. Tontiwachwuthikul, A. Chakma, Comparing the absorption performance of packed columns and membrane contactors, Ind. Eng. Chem. Res. 44 (2005) 5726-5732.

DOI: 10.1021/ie040264k

Google Scholar

[24] S. Roussanaly, R. Anantharaman, K. Lindqvist, H. Zhai, E. Rubin, Membrane properties required for post-combustion CO2 capture at coal-fired power plants, J. Membr. Sci. 511 (2016) 250-264.

DOI: 10.1016/j.memsci.2016.03.035

Google Scholar

[25] K.D. Dorkenoo, P.H. Pfromm, Accelerated physical aging of thin poly[1-(trimethylsilyl)-1-propyne] films, Macromol. 33 (2000) 3747-3751.

DOI: 10.1021/ma9921145

Google Scholar

[26] D.S. Bakhtin, L.A. Kulikov, S.A. Legkov, V.S. Khotimskiy, I.S. Levin, I.L. Borisov, A.L. Maksimov, V.V. Volkov, E.A. Karakhanov, AV. Volkov, Aging of thin-film composite membranes based on PTMSP loaded with porous aromatic frameworks, J. Membr. Sci. 554 (2018) 211-220.

DOI: 10.1016/j.memsci.2018.03.001

Google Scholar

[27] Mode list of gas-fractionation plant from Kuibyshevskiy Petroleum Refinery (17.09.2009).

Google Scholar