Properties of Polysulfone Hollow Fiber Membranes Depending on the Method of the Spinning Solution Preparing

Article Preview

Abstract:

The spinning solution properties (viscosity, chemical composition) can be varied depending on the method of its preparation. These variations might cause changes in the thermodynamics and kinetics of the phase separation process during the membrane formation. In this work, the influence of various modes of spinning solution preparation on the morphology, geometric and gas transport properties of the resulting polysulfone (PSf) hollow fiber membranes was investigated. The differences in methods of solution preparation were the temperature and time of stirring. It was found that with the transition to the lower-temperature stirring of the spinning solution the outer diameter and wall thickness of the fiber increase, and the thickness of the selective layer decreases. The highest ideal selectivity values are observed with the solution stirring for 5 hours at temperature 120 °С (3.1 for pair He/CO2). The maximum values of the gas permeability are achieved in the mode of the solution stirring for 24 hours at temperature 50 °C (P/l (He) = 201 m3/( m2∙h∙atm); P/l (CO2) = 83 m3/( m2∙h∙atm)).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

443-448

Citation:

Online since:

October 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N. Peng, N. Widjojo, P. Sukitpaneenit, M.M. Teoh, G.G. Lipscomb, T.S. Chung, J.-Y. Lai, Evolution of polymeric hollow fibers as sustainable technologies: past, present, and future, Prog. Polym. Sci. 37 (2012) 1401-1424.

DOI: 10.1016/j.progpolymsci.2012.01.001

Google Scholar

[2] I. Borisov, V. Vasilevsky, D. Matveev, A. Ovcharova, A. Volkov V. Volkov, Effect of Temperature Exposition of Casting Solution on Properties of Polysulfone Hollow Fiber Membranes, Fibers. 7 (2019) 110.

DOI: 10.3390/fib7120110

Google Scholar

[3] C.Y. Feng, K.C. Khulbe, T. Matsuura, A.F. Ismail, Recent progresses in polymeric hollow fiber membrane preparation, characterization and applications, Sep. Purif. Technol. 111 (2013) 43-71.

DOI: 10.1016/j.seppur.2013.03.017

Google Scholar

[4] A. Ismail, W. Lorna, Suppression of plasticization in polysulfone membranes for gas separations by heat-treatment technique, Sep. Purif. Technol. 30 (2003) 37-46.

DOI: 10.1016/s1383-5866(02)00097-7

Google Scholar

[5] A.K. Hołda, I.F. Vankelecom, Integrally skinned PSf-based SRNF-membranes prepared via phase inversion—Part A: Influence of high molecular weight additives. J. Membr. Sci. 450 (2014) 512–521.

DOI: 10.1016/j.memsci.2013.08.050

Google Scholar

[6] Y. Liu, G.H. Koops, H. Strathmann, Characterization of morphology controlledpolyethersulfone hollow fiber membranes by the addition of polyethyleneglycol to the dope and bore liquid solution, J. Membr. Science. 223 (2003) 187-199.

DOI: 10.1016/s0376-7388(03)00322-3

Google Scholar

[7] H. Ohya, S. Shiki, H. Kawakami, Fabrication study of polysulfone hollow-fiber microfiltration membranes: optimal dope viscosity for nucleation and growth, J. Membr. Science. 326 (2009) 293-302.

DOI: 10.1016/j.memsci.2008.10.001

Google Scholar

[8] A.V. Bildyukevich, T.V. Plisko, A.S. Liubimova, V.V. Volkov, V.V. Usosky, Hydrophilization of polysulfone hollow fiber membranes via addition of polyvinylpyrrolidone to the bore fluid, J. Membr. Science. 524 (2017) 537-549.

DOI: 10.1016/j.memsci.2016.11.042

Google Scholar

[9] I. Borisov, A. Ovcharova, D. Bakhtin, S. Bazhenov, A. Volkov, R. Ibragimov, R. Gallyamov, G. Bondarenko, R. Mozhchil, A. Bildyukevich, V. Volkov, Development of Polysulfone Hollow Fiber Porous Supports for High Flux Composite Membranes: Air Plasma and Piranha Etching, Fibers. 5 (2017) 6.

DOI: 10.3390/fib5010006

Google Scholar

[10] A. Mansourizadeh, A.F. Ismail, M.A. Aroon, Effect of Different Additives on the Properties and Performance of Porous Polysulfone Hollow Fiber Membranes for CO2 Absorption, in: A.F. Ismail, T. Matsuura (Eds.), Sustainable Membrane Technology for Energy, Water and Environment, John Wiley & Sons Inc., New Jersey, № 16, 2009, pp.191-201.

DOI: 10.1002/9781118190180.ch16

Google Scholar

[11] L.B. Zhao, Z.L. Xu, M. Liu, Y.M. Wei, Preparation and characterization of PSf hollow fiber membrane from PSf-HBPE-PEG400-NMP dope solution, J. Membr. Science. 454 (2014) 184-192.

DOI: 10.1016/j.memsci.2013.11.057

Google Scholar

[12] D.W. Reynolds, M. Galvani, S.R. Hicks, B.J. Joshi, S.A. Kennedy-Gabb, M.H. Kleinman, P.Z. Parmar, The use of N-methylpyrrolidone as a cosolvent and oxidant in pharmaceutical stress testing, J. Pharm. Sci. 101 (2012) 761-776.

DOI: 10.1002/jps.22793

Google Scholar

[13] A.V. Bildyukevich, V.V. Usosky, Prevention of the capillary contraction of polysulfone based hollow fiber membranes. Pet. Chem. 54 (2014) 652–658.

DOI: 10.1134/s0965544114080027

Google Scholar