[1]
O. Ghita, E. James, R. Davies, et al., High Temperature Laser Sintering (HT-LS): An investigation into mechanical properties and shrinkage characteristics of Poly (Ether Ketone) (PEK) structures, Materials and Design. 61 (2014) 124-132.
DOI: 10.1016/j.matdes.2014.04.035
Google Scholar
[2]
M. Schmidt, D. Pohle, T. Rechtenwald, Selective laser sintering of PEEK, CIRP Annals-Manufacturing Technology. 56 (2007) 205-208.
DOI: 10.1016/j.cirp.2007.05.097
Google Scholar
[3]
O.R. Ghita, E. James, R. Trimble, et al., Physico-chemical behaviour of poly (ether ketone) (PEK) in high temperature laser sintering (HT-LS), Journal Mater Process Technology. 214 (2014) 969-978.
DOI: 10.1016/j.jmatprotec.2013.11.007
Google Scholar
[4]
D. Pohle, S. Ponader, T. Rechtenwald, et al., Processing of Three-Dimensional Laser Sintered Polyether-etherketone Composites and Testing of Osteoblast Proliferation in vitro, Macromol. Symp. 253 (2007) 65-70.
DOI: 10.1002/masy.200750708
Google Scholar
[5]
A. Leon, Q. Chen, N.B. Palaganas, et al., High performance polymer nanocomposites for additive manufacturing application, Reactive and functional polymers. 103 (2015) 141-155.
DOI: 10.1016/j.reactfunctpolym.2016.04.010
Google Scholar
[6]
E. Kroll, D. Artzi, Enhancing aerospace engineering students' learning with 3D-printing wind-tunnel models, Rapid Prototyping Journal. 17 (2011) 393-402.
DOI: 10.1108/13552541111156522
Google Scholar
[7]
K.C. Chuang, E.J. Grady, R. Draper, Draper Additive manufacturing and characterization of UL-TEM polymers and composites, NASA CAMX Conference Proceedings. (2015) 1-15.
Google Scholar
[8]
S.H. Huang, P. Liu, A. Mokasdar, et al., Additive manufacturing and its societal impact: a literature review, The International Journal of Advanced Manufacturing Technology. 5-8 (2013) 1191-1203.
DOI: 10.1007/s00170-012-4558-5
Google Scholar
[9]
X. Wang, M. Jiang, Z. Zhou, et al., 3D-printing of polymer matrix composites. A review and prospective, Composites Part B. 110 (2016) 442-458.
DOI: 10.1016/j.compositesb.2016.11.034
Google Scholar
[10]
S. Hwang, E.I. Reyes, K. Moon, et al., Thermo-mechanical Characterization of Metal/Polymer Composite Filaments and Printing Parameter Study for Fused Deposition Modeling in the 3D-Printing Process, Journal of Electronic Materials. 3 (2015) 771-777.
DOI: 10.1007/s11664-014-3425-6
Google Scholar
[11]
Zh.I. Kurdanova, A.A. Zhansitov, S.Yu. Khashirova, et al., Development of technology of polysulfone production for 3D-printing, High Performance Polymers. 29 (2017) 724-729.
DOI: 10.1177/0954008317704500
Google Scholar
[12]
X. Wang, F. Liang, Q. Yang, et al., Processing and characterization of helical carbon nanotube paper based thermoplastic nanocomposite films, Conference: CAMX 2014 – Composites and Advanced Materials Expo: Combined Strength. Unsurpassed Innovation. (2014) 1-9.
Google Scholar
[13]
C. Zhang, Z. Wang, Introduction of a phenanthrene ring into poly(aryleneethers) via intramolecular cyclization of 2,2'-dibenzoylbiphenyl units, Macromolecules. 26 (1993) 3330-3335.
DOI: 10.1021/ma00065a014
Google Scholar
[14]
Z. Wang, C. Zhang, F. Arnoux, Controlled Transformation of 2,2'-diacylbiphenyl unit to a phenanthrene ring in poly(arylene ether ketone), Macromolecules. 27 (1994) 4415-4421.
DOI: 10.1021/ma00094a001
Google Scholar
[15]
O. Noiset, Y.-J. Schneider, J. Marchand-Brynaert, Surface modification of poly(aryl ether ether ketone) (PEEK) film by covalent coupling of amines and amino acids through a spacer arm, J. Polym. Sci. Part A. 35 (1997) 3779-3790.
DOI: 10.1002/(sici)1099-0518(199712)35:17<3779::aid-pola17>3.0.co;2-a
Google Scholar
[16]
C. Henneuse-Boxus, A. De Ro, P. Bertrand, et al., Covalent attachment of fluorescence probes on the PEEK-OH film surface, Polymer. 41 (2000) 2339-2348.
DOI: 10.1016/s0032-3861(99)00407-3
Google Scholar
[17]
A.A. Zhansitov, A.L. Slonov, et al., Synthesis and properties of polyetheretherketones for 3d-printing, Fibre Chemistry. 49 (2018) 414-419.
DOI: 10.1007/s10692-018-9911-5
Google Scholar
[18]
A.A. Zhansitov, S.Y. Khashirova, A.L. Slonov, et al., Development of technology of polysulfone production for 3D-printing. High Performance Polymers. 29 (2017) 724-729.
DOI: 10.1177/0954008317704500
Google Scholar
[19]
X. Wang, M. Jiang, Z. Zhou, et al., 3D-printing of polymer matrix composites: A review and prospective. A review and prospective, Composites. Part B. 110 (2016) 442-458.
DOI: 10.1016/j.compositesb.2016.11.034
Google Scholar
[20]
S. Berretta, O. Ghita, K.E. Evans, Polymer viscosity, particle coalescence and mechanical performance in high-temperature laser sintering, Europ. Polymer J. 59 (2014) 218-229.
DOI: 10.1007/s10853-016-9761-6
Google Scholar
[21]
H. Zarringhalam, N. Hopkinson, N.F. Kamperman, et al., Effects of processing on microstructure and properties of SLS Nylon 12, Mater. Sci. Eng. A. 435-436 (2006) 172-180.
DOI: 10.1016/j.msea.2006.07.084
Google Scholar
[22]
R.D. Goodridge, R.J.M. Hague, C.J. Tuck, Effect of. long-term ageing on the tensile properties of a polyamide 12 laser sintering material, Polymer Testing. 29 (2010) P. 483-93.
DOI: 10.1016/j.polymertesting.2010.02.009
Google Scholar
[23]
R.D. Goodridge, C.J. Tuck, R.J. Hague, Laser sintering of polyamides and other polymers, Prog. Mater. Sci. 57 (2012) 229-267.
DOI: 10.1016/j.pmatsci.2011.04.001
Google Scholar
[24]
S.R. Athreya, K. Kalaitzidou, S. Das, Mechanical and microstructural properties of nylon-12/carbon black composites: selective laser sintering versus melt compounding and injection molding, Compos. Sci. Technol. 71 (2011) 506-510.
DOI: 10.1016/j.compscitech.2010.12.028
Google Scholar
[25]
A. Nazarov, I. Skornyakov, I. Shishkovsky, High-Temperature Polymer Materials with the Alignment Control System of Layer Deposition, Machines. 6 (2018) 1-17.
DOI: 10.3390/machines6010011
Google Scholar
[26]
J. Olinek, C. Anand, C.T. Bellehumeur, Experimental study on the flow and deposition of powder particles in rotational molding, Polymer Eng. Sci. 45 (2005) 62-73.
DOI: 10.1002/pen.20230
Google Scholar
[27]
K. Tan, Selective laser sintering of biocompatible polymers for applications in tissue engineering, Biomed. Mater. Eng. 15 (2005) 113-124.
Google Scholar
[28]
M. Schmidt, Selective laser sintering of PEEK, CIRP Ann. Manuf. Technol. 56 (2007) 205-208.
Google Scholar
[29]
S.A. Chavan, M.A. Anwar, B.R. Shaha, Review of effect of process parameters on mechanical properties of 3D printed components, In Proceedings of the 6th International Conference on Recent Development in Engineering Science, Humanities and Management. (2017) 461-466.
Google Scholar
[30]
A.S. Bala, S.B. Wahab, M.B. Ahmad, Elements and materials improve the FDM products: A review. Adv. Eng. Forum. 16 (2016) 33-51.
DOI: 10.4028/www.scientific.net/aef.16.33
Google Scholar
[31]
W. Wu, P. Geng, J. Zhao, et al., Manufacture and thermal deformation analysis of semicrystalline polymer polyether ether ketone by 3D-printing, Mater. Res. Innov. 18 (2014) 5-12.
DOI: 10.1179/1432891714z.000000000898
Google Scholar
[32]
W. Wu, P. Geng, G. Li, D. Zhao, et al., Influence of Layer Thickness and Raster Angle on the Mechanical Properties of 3D Printed PEEK and a Comparative Mechanical Study between PEEK and ABS, Materials. 8 (2015) 5834-5846.
DOI: 10.3390/ma8095271
Google Scholar
[33]
V. Mohammad, Extrusion-based additive manufacturing of PEEK for biomedical applications, Virtual Phys. Prototyp. 10 (2015) 1-13.
Google Scholar
[34]
C. Yang, X. Tian, D. Li, et al., Influence of thermal processing conditions in 3D-printing on the crystallinity and mechanical properties of PEEK material, J. Mater. Process. Technol. 248 (2017) 1-7.
DOI: 10.1016/j.jmatprotec.2017.04.027
Google Scholar
[35]
C. Gianluca, L. Alberta, D. Barbara, et al., Engineering thermoplastics for additive manufacturing: A critical perspective with experimental evidence to support functional applications, J. Appl. Biomater. Funct. Mater. 15 (2017) 10-18.
Google Scholar
[36]
W. Wu, W. Ye, Z. Wu, et al., Influence of layer thickness, raster angle, deformation temperature and recovery temperature on the shape-memory effect of 3D-printed polylactic acid samples, Materials. 10 (2017) 970-975.
DOI: 10.3390/ma10080970
Google Scholar
[37]
X. Deng, Mechanical Properties Optimization of Poly-Ether-Ether-Ketone via Fused Deposition Modeling, Materials. 11 (2018) 1-11.
DOI: 10.3390/ma11020216
Google Scholar
[38]
W. Wu, P. Geng, G. Li, et al., Influence of Layer Thickness and Raster Angle on the Mechanical Properties of 3D Printed PEEK and a Comparative Mechanical Study between PEEK and ABS, Materials. 8 (2015) 5834-5846.
DOI: 10.3390/ma8095271
Google Scholar
[39]
V. Mohammad, Extrusion-based additive manufacturing of PEEK for biomedical applications, Virtual Phys. Prototyp. 10 (2015) 1-13.
Google Scholar
[40]
S. Berretta, Morphology of polymeric powders in Laser Sintering (LS): from Polyamide to new PEEK powders, European Polymer Journal. 59 (2014) 218,229.
DOI: 10.1016/j.eurpolymj.2014.08.004
Google Scholar
[41]
I. Gibson, D.P. Shi, Material properties and fabrication parameters in selective laser sintering process, Rapid prototyping journal. 3 (1997) 129-136.
DOI: 10.1108/13552549710191836
Google Scholar
[42]
I. Gibson, Material properties and fabrication parameters in selective laser sintering process, Rapid prototyping journal. 3 (1997) 129-136.
DOI: 10.1108/13552549710191836
Google Scholar
[43]
S. Berretta, K.E. Evans, O. Ghita, Process ability of PEEK, a new polymer for High Temperature Laser Sintering (HT-LS), Virtual Phys. Prototyp. 10 (2015) 1-13.
DOI: 10.1016/j.eurpolymj.2015.04.003
Google Scholar
[44]
I. Gibson, Material properties and fabrication parameters in selective laser sintering process, Rapid prototyping journal. 3 (1997) 129-136.
DOI: 10.1108/13552549710191836
Google Scholar
[45]
B. Caulfield, P.E. McHugh, S. Lohfeld, Dependence of mechanical properties of polyamide components on build parameters in the SLS process, Journal of Materials Processing Technology. 182 (2007) 477-488.
DOI: 10.1016/j.jmatprotec.2006.09.007
Google Scholar
[46]
M. Vasquez, B. Haworth, N. Hopkinson, Methods for quantifying the stable sintering region in laser sintered polyamide-12, Polymer Engineering & Science. 53 (2013) 1230-1240.
DOI: 10.1002/pen.23386
Google Scholar
[47]
H.C. Ho, I. Gibson, W.L. Cheung, Effects of energy density on morphology and properties of selective laser sintered polycarbonate, Journal of Materials Processing Technology. 89-90 (1999) 204-210.
DOI: 10.1016/s0924-0136(99)00007-2
Google Scholar
[48]
M. Vasquez, B. Haworth, N. Hopkinson, Methods for quantifying the stable sintering region in laser sintered polyamide-12, Polymer Engineering & Science. 53 (2013) 1230-1240.
DOI: 10.1002/pen.23386
Google Scholar