Influence of the P-Delta Effect on the Design of Steel Moment Resisting Frame in Seismic Areas

Article Preview

Abstract:

Steel moment resisting frames (MRFs) compliant with EN1998-1 are generally overdesigned in order to satisfy the requirements for lateral deformability and P-Delta effects. On the contrary, the North American codes (e.g. ASCE7) give different rules for P-Delta effects. The current draft version of the amended EN1998-1-1 introduces a different methodology to account for the structural lateral displacements. In this paper static non-linear analyses were carried out to evaluate the effectiveness of the new EC8 provisions with respect to the former version of EC8 and the current ASCE7. The results show that the structures designed according to the latest draft version of the EN1998-1-1 and those compliant with the North American code exhibit similar behavior.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

33-37

Citation:

Online since:

January 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. Nastri, Design and assessment of steel structures in seismic areas: Outcomes of the last Italian conference of steel structures, 35(2) (2018) 1-4.

Google Scholar

[2] A. Y. Elghazouli, Assessment of European seismic design procedures for steel framed structures, Bull. Earthq. Eng. 8(1) (2010) 65-89.

DOI: 10.1007/s10518-009-9125-6

Google Scholar

[3] R. Tartaglia, M. D'Aniello, G. A. Rassati, J. Swanson, R. Landolfo, Influence of composite slab on the nonlinear response of extended end-plate beam-to-column joints, Key Eng. Mater. 763 (2018) 818-825.

DOI: 10.4028/www.scientific.net/kem.763.818

Google Scholar

[4] A. R. Medina, H. J. Krawinkler, Evaluation of drift demands for the seismic performance assessment of frames. Struc. Eng. 131(7) (2005) 1003-1013.

DOI: 10.1061/(asce)0733-9445(2005)131:7(1003)

Google Scholar

[5] EN 1998-1, Design of Structures for Earthquake Resistance - Part 1: General Rules, Seism. Act. Rules Build. CEN, (2005).

Google Scholar

[6] M. D'Aniello, E. M. Güneyisi, R. Landolfo, K. Mermerdaş, Analytical prediction of available rotation capacity of cold-formed rectangular and square hollow section beams, Thin-Walled Struc, 77 (2014) 141-152.

DOI: 10.1016/j.tws.2013.09.015

Google Scholar

[7] E. M. Güneyisi, M. D'Aniello, R. Landolfo, K. Mermerdaş, Prediction of the flexural overstrength factor for steel beams using artificial neural network, Steel Comp. Struct. 17(3) (2014) 215-236.

DOI: 10.12989/scs.2014.17.3.215

Google Scholar

[8] M. D'Aniello, E. M. Güneyisi, R. Landolfo, K. Mermerdaş, Predictive models of the flexural overstrength factor for steel thin-walled circular hollow section beams, Thin-Walled Struct. 94 (2015) 67-78.

DOI: 10.1016/j.tws.2015.03.020

Google Scholar

[9] Tenchini, M. D'Aniello, C. Rebelo, R. Landolfo, L. S. da Silva, L. Lima, Seismic performance of dual-steel moment resisting frames. J. Constr. Steel Res. 101 (2014) 437-454.

DOI: 10.1016/j.jcsr.2014.06.007

Google Scholar

[10] D. Cassiano, M. D'Aniello, C. Rebelo, R. Landolfo, L. S. da Silva, Influence of seismic design rules on the robustness of steel moment resisting frames, Steel Compo. Struc. 21(3) (2016) 479-500.

DOI: 10.12989/scs.2016.21.3.479

Google Scholar

[11] A. Campiche, S. Shakeel, V. Macillo, M. T. Terracciano, B. Bucciero, T. Pali, L. Fiorino, R. Landolfo, Seismic Behaviour of Sheathed CFS Buildings: Shake Table Tests and Numerical Modelling, Ing. Sismica. 2 (2018) 106-123.

DOI: 10.4028/www.scientific.net/kem.763.584

Google Scholar

[12] L. Fiorino, S. Shakeel, V. Macillo, R. Landolfo, Seismic response of CFS shear walls sheathed with nailed gypsum panels: Numerical modelling, Thin-Walled Struc. 122 (2018) 359-370.

DOI: 10.1016/j.tws.2017.10.028

Google Scholar

[13] V. Macillo, S. Shakeel, L. Fiorino, R. Landolfo, Development and Calibration of Hysteretic Model for CFS Strap braced stud walls, Int. J. Adv. Steel Constr. 14(3) (2018) 337-360.

DOI: 10.18057/ijasc.2018.14.3.2

Google Scholar

[14] S. Shakeel, R. Landolfo, L .Fiorino, Behaviour factor evaluation of CFS shear walls with gypsum board sheathing according to FEMA P695 for Eurocodes, Thin-Walled Struct. Elsevier Science, 141 (2019) 194-207.

DOI: 10.1016/j.tws.2019.04.017

Google Scholar

[15] A. Campiche, S. Shakeel, Effect of Architectural Non-Structural Components on Lateral Behaviour of CFS Structures: Shake-Table Tests and Numerical Modelling, Proceedings of COMPDYN 2019 7th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, Crete, Greece. (2019).

DOI: 10.7712/120119.7345.19771

Google Scholar

[16] A. Campiche, L. Fiorino, R. Landolfo, Numerical modelling of CFS two-storey sheathing-braced building under shaking-table excitations, J. Constr. Steel Res. 170 (2020) 106110.

DOI: 10.1016/j.jcsr.2020.106110

Google Scholar

[17] S. Shakeel, Quantifying the seismic ductility of lightweight steel lateral force resisting systems through procedures of FEMA P695, International Colloquia on Stability and Ductility of Steel (SDSS), Prague, Czech Republic. (2019).

DOI: 10.7712/120119.7348.20812

Google Scholar

[18] V. Macillo, A. Campiche, S. Shakeel, B. Bucciero, T. Pali, M. T. Terracciano, L. Fiorino, R. Landolfo, Seismic Behaviour of Sheathed CFS Buildings: Shake-Table Testing and Numerical Modelling, Key Eng. Mater. 763 (2018) 584-591.

DOI: 10.4028/www.scientific.net/kem.763.584

Google Scholar

[19] D. Cassiano, M. D'Aniello, C. Rebelo, Parametric finite element analyses on flush end-plate joints under column removal, J Constr Steel Res. 137 (2017) 77-92.

DOI: 10.1016/j.jcsr.2017.06.012

Google Scholar

[20] D. Cassiano, M. D'Aniello, C. Rebelo, Seismic behaviour of gravity load designed flush end-plate joints. Steel Comp. Struct. 26(5) (2018) 621-634.

Google Scholar

[21] R. Tartaglia, M. D'Aniello, G. D. Lorenzo, A. D. Martino, Influence of EC8 rules on P-Delta effects on the design and response of steel MRF, Ingegneria Sismica, 35(3) (2018) 104-120.

Google Scholar

[22] M. Zimbru, R. Tartaglia, Preliminary finite element analyses on the experimental mock-up frames of FREEDAM research project, AIP Conf. Pro. 2116(1) (2019) 260015.

DOI: 10.1063/1.5114266

Google Scholar

[23] SeismoStruct 2018 – A computer program for static and dynamic nonlinear analysis of framed structures, available from http://www.seismosoft.com.

Google Scholar

[24] M. Menegotto, P. E. Pinto, Method of analysis for cyclic ally loaded R.C. plane frames including changes in geometry and non-elastic behaviour of elements under combined normal force and bending. Proc. of Symposium on the Resistance and Ultimate Deformability of Structures Acted on by Well Defined Repeated Loads, (1973).

Google Scholar

[25] R. Tartaglia, M. D'Aniello, Nonlinear Performance of Extended Stiffened End Plate Bolted Beam-to-column Joints Subjected to Column Removal, Open Civ. Eng. J. 11 (2017) 369-383.

DOI: 10.2174/1874149501711010369

Google Scholar

[26] R. Tartaglia, M. D'Aniello, A. D. Martino, Ultimate performance of external end-plate bolted joints under column loss scenario accounting for the influence of the transverse beam, Open Constr. Build. Technol. J. 11 (2017) 369-383.

DOI: 10.2174/1874836801812010132

Google Scholar

[27] R. Tartaglia, M. D'Aniello, G. A. Rassati, Proposal of AISC-compliant seismic design criteria for ductile partially-restrained end-plate bolted joints, J. Constr. Steel Res. 159 (2019) 364-383.

DOI: 10.1016/j.jcsr.2019.05.006

Google Scholar

[28] M. Zimbru, R. Tartaglia, Preliminary finite element analyses on the experimental mock-up frames of FREEDAM research project, AIP Conf. Pro. 2116(1) (2019) 260015.

DOI: 10.1063/1.5114266

Google Scholar

[29] R. Tartaglia, M. Zimbru, Influence of dissipative joints on the behaviour of steel MRFs: FREEDAM vs equal-strength bolted joints, IOP Conf. Ser. Mater. Sci. Eng. 473(1) (2019) 012037.

DOI: 10.1088/1757-899x/473/1/012037

Google Scholar

[30] EQUALJOINTS – European pre-QUALified steel JOINTS: RFSR-CT-2013-00021. Research Fund for Coal and Steel (RFCS) research programme.

Google Scholar