Control the Surface Wettability of Thermo-Responsive Poly(Ethylene Glycol Methyl Ether methacrylate-co-Triethylene Glycol Methyl Ether Methacrylate) Thin Film by Varying Temperature

Article Preview

Abstract:

The surface wettability of thermo-responsive random poly (ethylene glycol methyl ether methacrylate-co-triethylene glycol methyl ether methacrylate), abbreviated as P(MEOMA-co-MEO3MA), was investigated in thin film. UV-Vis spectroscopy shows that the LCST of P(MEOMA-co-MEO3MA) with molar ratios of 0:20, 6:14 and 9:11 were 43°C, 32 oC and 25 oC, respectively. LCST shifts towards lower temperature when molar ratio of MEOMA increases. ATR-FTIR indicates that P(MEOMA-co-MEO3MA) thin film experienced a collapse when the temperature passes its LCST. The contact angle of the paraffin oil on the film decreases 15o when the temperature is above its LCST, which confirms the surface wettability can be controlled. Atomic force microscopy shows the surface of the swollen thin film becomes rougher when above it LCST.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

53-58

Citation:

Online since:

January 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Meng, J. Hu, A brief review of stimulus-active polymers responsive to thermal, light, magnetic, electric, and water/solvent stimuli, J. Mater. Syst. Strut. 21 (2010) 859-885.

DOI: 10.1177/1045389x10369718

Google Scholar

[2] J. Dragan, A. Tourrette, P. K. Lavric, Biopolymer-based stimuli-responsive polymeric systems for functional finishing of textiles, J. Biopolym. 45 (2009) 37-40.

DOI: 10.5772/10257

Google Scholar

[3] K. Akamol, C. Nagamani, S. Thayumanavan, Multi-stimuli sensitive amphiphilic block copolymer assemblies, J. Am. Chem. Soc. 131 (2009) 4830-4838.

DOI: 10.1021/ja809475a

Google Scholar

[4] L. J. Francois, Polymerization of oligo (ethylene glycol) (meth) acrylates: toward new generations of smart biocompatible materials, J. Polym. Sci. Part A: Polym. Chem. 46 (2008) 3459-3470.

DOI: 10.1002/pola.22706

Google Scholar

[5] J. T. Wang, Y. C. Chiu, H. S. Sun, et al., Synthesis of multifunctional poly (1-pyrenemethyl methacrylate)-b-poly (N-isopropylacrylamide)-b-poly (N-methylolacrylamide) s and their electrospun nanofibers for metal ion sensory applications, J. Polym. Chem. 6 (2015) 2327-2336.

DOI: 10.1039/c4py01773k

Google Scholar

[6] A. Geissler, F. Loyal, M. Biesalski, et al., Thermo-responsive superhydro-phobic paper using nanostructured cellulose stearoyl ester, Cellulose, 21 (2014) 357-366.

DOI: 10.1007/s10570-013-0160-8

Google Scholar

[7] C. Azra, D. Alhzov, E. Zussman, Effect of polymer nanofibers thermoelasticity on deformable fluid-saturated porous membrane, J. Polym. 58 (2015) 162-169.

DOI: 10.1016/j.polymer.2014.12.062

Google Scholar

[8] P. Glampedaki, A. Calvimontes, V. Dutschk, et al., Polyester textile functionalization through incorporation of pH/thermo-responsive microgels. Part II: polyester functionalization and characterization, J. Mater. Sci. 47 (2012) 2078-2087.

DOI: 10.1007/s10853-011-6006-6

Google Scholar

[9] H. Zhou, R. Xun, Q. Liu, et al., Preparation of Thermal and pH Dually Sensitive Polyurethane Membranes and Their Properties, J. Macromole. Sci. Part B, 53 (2014) 398-411.

DOI: 10.1080/00222348.2013.845059

Google Scholar

[10] Q. Zhong, Y. Y. Chen, S. L. Guan, et al., Smart cleaning cotton fabrics cross-linked with thermo-responsive and flexible poly (2-(2-methoxyethoxy) ethoxyethyl methacrylate-co-ethylene glycol methacrylate), J. RSC Adv. 5 (2015) 38382-38390.

DOI: 10.1039/c5ra03256c

Google Scholar

[11] Y. Ye, J. Huang, X. Wang, Fabrication of a Self-Cleaning Surface via the Thermo-Sensitive Copolymer Brush of P(NIPAAm-PEGMA), J. ACS Appl. Mater. Interf. 7 (2015) 22128-22136.

DOI: 10.1021/acsami.5b07336

Google Scholar

[12] T. Saitoh, K. Asano, M. Hiraide, Polyallylamine-conjugated thermo-responsive polymers for the rapid removal of phenolic compounds from water, J. React. Function. Polym. 72 (2012) 317-322.

DOI: 10.1016/j.reactfunctpolym.2012.03.006

Google Scholar

[13] Y. Cao, N. Liu, C. Fu, et al., Thermo and pH dual-responsive materials for controllable oil/water separation, J. ACS Appl. Mater. Interf. 6 (2014)) 2026-2030.

DOI: 10.1021/am405089m

Google Scholar

[14] J. Wu, Y. Jiang, D. Jiang, et al., The fabrication of pH-responsive polymeric layer with switchable surface wettability on cotton fabric for oil/water separation, J. Mater. Lett. 160 (2015) 384-387.

DOI: 10.1016/j.matlet.2015.07.146

Google Scholar

[15] V. Aseyev, H. Tenhu, F. M. Winnik, Non-ionic thermoresponsive polymers in wate. Self-Organized Nanostructures of Amphiphilic Block Copolymers II. Springer, Berlin, 2010, pp.29-89.

DOI: 10.1007/12_2010_57

Google Scholar

[16] J. F. Lutz, K. Weichenhan, O. Akdemir, et al., About the phase transitions in aqueous solutions of thermoresponsive copolymers and hydrogels based on 2-(2-methoxyethoxy) ethyl methacrylate and oligo (ethylene glycol) methacrylate, J. Macromolecules. 40 (2007) 2503-2508.

DOI: 10.1021/ma062925q

Google Scholar

[17] Q. Zhong Q, C. Chen, L. Mi, et al., Thermoresponsive diblock copolymer films with a linear shrinkage behavior and its potential application in temperature sensors. J. Langmuir. 36 (2020) 742-753.

DOI: 10.1021/acs.langmuir.9b03462

Google Scholar

[18] Q. Zhong, W. Wang, J. Adelsberger, et al., Collapse transition in thin films of poly (methoxydiethylenglycol acrylate, J. Colloid Polym. Sci. 289 (2011) 569-581.

DOI: 10.1007/s00396-011-2384-1

Google Scholar