Innovative UHS Steel Material for Tension-Only Braced CFS Walls

Article Preview

Abstract:

Lightweight Steel (LWS) systems, made of Cold Formed Steel (CFS) profiles, are widespread in seismic areas and often preferred to traditional systems. Improving structural performances in order to have higher building is now the goal, which could be achieved thanks to the use of steel innovative material. In particular, to increase the seismic performances of CFS buildings, the University of Naples “Federico II”, in cooperation with the Italian company Lamieredil S.p.A., has developed an innovative Lateral Force Resisting System (LFRS). The LFRS mainly consists of CFS frame (studs and tracks) braced by “V” shaped pre-tensioned Ultra High Strength (UHS) steel bars. The bracing was designed to be able to limit global displacement of structure, working as elastic spring, and to dissipate seismic energy by yielding. In order to prove the effectiveness of the new system, an extensive experimental campaign has been conducted. This paper focuses on material and component tests, describing tension tests on traditional materials and UHS steel, creep tests on UHS steel and nut-bar assembly tests.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

25-31

Citation:

Online since:

January 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Tartaglia, M. D'Aniello, Nonlinear Performance of Extended Stiffened End Plate Bolted Beam-to-column Joints Subjected to Column Removal, Open Civ. Eng. J. 11 (2017) 369-383.

DOI: 10.2174/1874149501711010369

Google Scholar

[2] R. Tartaglia, M. D'Aniello, A. De Martino, Ultimate performance of external end-plate bolted joints under column loss scenario accounting for the influence of the transverse beam, Open Constr. Build. Technol. J. 11 (2017) 369-383.

DOI: 10.2174/1874836801812010132

Google Scholar

[3] R. Tartaglia, M. D'Aniello, G.A. Rassati, Proposal of AISC-compliant seismic design criteria for ductile partially-restrained end-plate bolted joints, J. Constr. Steel Res. 159 (2019) 364-383.

DOI: 10.1016/j.jcsr.2019.05.006

Google Scholar

[4] M. Zimbru, R. Tartaglia, Preliminary finite element analyses on the experimental mock-up frames of freedam research project, IOP Conf. Ser. Mater. Sci. Eng., (2019).

DOI: 10.1088/1757-899x/473/1/012038

Google Scholar

[5] R. Tartaglia, M. Zimbru, Influence of dissipative joints on the behaviour of steel MRFs: FREEDAM vs equal-strength bolted joints, in: IOP Conf. Ser. Mater. Sci. Eng., (2019).

DOI: 10.1088/1757-899x/473/1/012037

Google Scholar

[6] S. Costanzo, R. Tartaglia, G. D. Lorenzo, A. D. Martino, Seismic behaviour of EC8-compliant moment resisting and concentrically braced frames, Buildings, 9 (2019).

DOI: 10.3390/buildings9090196

Google Scholar

[7] R. Tartaglia, M. Zimbru, A. Linguiti, M. D'Aniello, R. Landolfo, The fire behaviour of extended stiffened joints designed for seismic actions, Int. Colloq. Stab. Ductility Steel Struct. (2019) 1136-1144.

Google Scholar

[8] R. Tartaglia, M. D'Aniello, G. D. Lorenzo, R. Landolfo, Influence of geometrical imperfection of rib stiffeners on beam-to-column joint behaviour, in: Int. Colloq. Stab. Ductility Steel Struct. (2019) 1128-1135.

Google Scholar

[9] R. Landolfo, L. Fiorino, O. Iuorio, A Specific Procedure for Seismic Design of Cold-Formed Steel Housing, Adv. Steel Constr. 6 (2010) 603-618.

DOI: 10.1016/j.tws.2009.02.004

Google Scholar

[10] L. Fiorino, O. Iuorio, R. Landolfo, Seismic analysis of sheathing-braced cold-formed steel structures, Eng. Struct. 34 (2012) 538-547.

DOI: 10.1016/j.engstruct.2011.09.002

Google Scholar

[11] V. Macillo, S. Shakeel, L. Fiorino, R. Landolfo, Development and Calibration of a Hysteretic Model for CFS Strap braced stud walls, Adv. Steel Constr. 14 (2018) 336-359.

DOI: 10.18057/ijasc.2018.14.3.2

Google Scholar

[12] S. Shakeel, R. Landolfo, L. Fiorino, Behaviour factor evaluation of CFS shear walls with gypsum board sheathing according to FEMA P695 for Eurocodes, Thin-Walled Structures, Elsevier Science, 141 (2019) 194-207.

DOI: 10.1016/j.tws.2019.04.017

Google Scholar

[13] R. Landolfo, O. Iuorio, L. Fiorino, Experimental seismic performance evaluation of modular lightweight steel buildings within the ELISSA project, Earthq. Eng. Struct. Dyn. (2018) 1-23.

DOI: 10.1002/eqe.3114

Google Scholar

[14] R. Landolfo, Lightweight steel framed systems in seismic areas : Current achievements and future challenges, Thin-Walled Struct. 140 (2019) 114-131.

DOI: 10.1016/j.tws.2019.03.039

Google Scholar

[15] L. Fiorino, O. Iuorio, V. Macillo, R. Landolfo, Performance-based design of sheathed CFS buildings in seismic area, Thin-Walled Struct. 61 (2012) 248-257.

DOI: 10.1016/j.tws.2012.03.022

Google Scholar

[16] L. Raffaele, T. Pali, B. Bucciero, M. T. Terracciano, S. Shakeel, V. Macillo, O. Iuorio, L. Fiorino, Seismic response assessment of architectural non-structural LWS drywall components through experimental tests, J. Constr. Steel Res. 162 (2019) 105575.

DOI: 10.1016/j.jcsr.2019.04.011

Google Scholar

[17] L. Fiorino, B. Bucciero, R. Landolfo, Shake table tests of three storey cold-formed steel structures with strap-braced walls, Bull. Earthq. Eng. 17 (2019) 4217-4245.

DOI: 10.1007/s10518-019-00642-z

Google Scholar

[18] L. Fiorino, O. Iuorio, V. Macillo, M. T. Terracciano, T. Pali, R. Landolfo, Seismic Design Method for CFS Diagonal Strap-Braced Stud Walls: Experimental Validation, J. Struct. Eng. 142 (2016) 04015154.

DOI: 10.1061/(asce)st.1943-541x.0001408

Google Scholar

[19] V. Macillo, O. Iuorio, M. T. Terracciano, L. Fiorino, R. Landolfo, Seismic response of Cfs strap-braced stud walls: Theoretical study, Thin-Walled Struct. 85 (2014) 301-312.

DOI: 10.1016/j.tws.2014.09.006

Google Scholar

[20] T. Pali, V. Macillo, M. T. Terracciano, B. Bucciero, L. Fiorino, R. Landolfo, In-plane quasi-static cyclic tests of nonstructural lightweight steel drywall partitions for seismic performance evaluation, Earthq. Eng. Struct. Dyn. 47 (2018) 1566-1588.

DOI: 10.1002/eqe.3031

Google Scholar

[21] L. Fiorino, V. Macillo, R. Landolfo, Shake table tests of a full-scale two-story sheathing-braced cold-formed steel building, Eng. Struct. 151 (2017) 633-647.

DOI: 10.1016/j.engstruct.2017.08.056

Google Scholar

[22] L. Fiorino, M. T. Terracciano, R. Landolfo, Experimental investigation of seismic behaviour of low dissipative CFS strap-braced stud walls, J. Constr. Steel Res. 127 (2016) 92-107.

DOI: 10.1016/j.jcsr.2016.07.027

Google Scholar

[23] CEN, EN 1993-1-3 Eurocode 3: Design of steel structures-Part 1-3: General rules-Supplementary rules for cold-formed members and sheeting, European Committee for Standardization, Brussels, (2006).

DOI: 10.3403/02338401u

Google Scholar

[24] Ministero delle Infrastrutture, D.M. 17/01/2018, Norme Tecniche per le Costruzioni, n.d.

Google Scholar

[25] A. Campiche, Development of an innovative multi-performance system for LWS structures, SDSS 2019 - Int. Colloq. Stab. Ductility Steel Struct. (2019).

Google Scholar

[26] A. Campiche, S. Shakeel, R. Landolfo, Pre-tensioned UHS steel bracing system for CFS structures: planning of research project, in: Adv. Eng. Mater. Struct. Syst. Innov. Mech. Appl. - Proc. 7th Int. Conf. Struct. Eng. Mech. Comput. (SEMC 2019), Cape Town, South Africa, (2019) 1318-1323.

DOI: 10.1201/9780429426506-228

Google Scholar

[27] Ente Nazionale Italiano di Unificazione, UNI EN ISO 6892-1 - Prova di Trazione - Parte 1: Metodo di Prova a Temperatura Ambiente, (2009) 65.

Google Scholar

[28] M. D'Aniello, D. Cassiano, R. Landolfo, Monotonic and cyclic inelastic tensile response of European preloadable gr10.9 bolt assemblies, J. Constr. Steel Res. 124 (2016) 77-90.

DOI: 10.1016/j.jcsr.2016.05.017

Google Scholar