Mechanical Properties of Aged-TiNiPdCu High Temperature Shape Memory Alloys

Article Preview

Abstract:

High temperature ternary Ti50Ni25Pd25 and quaternary Ti50Ni20Pd25Cu5 shape memory alloys were developed in vacuum arc melting furnace using high purity constituent elements. Half numbers of samples were solution treated at 900 °C for 2 hrs and remaining were aged at 600 °C for 3 hrs. Both alloys were characterized for microstructure analysis and mechanical properties. After aging the alloys, no significant change in microstructure was observed in ternary alloy however, fine precipitates of bright color were found along the grain boundaries in quaternary alloy. The mechanical properties of ternary and quaternary alloys were found to be improved significantly. Microhardness of ternary alloy was increased by 18 Hv whereas for quaternary alloy the same property was improved by 24 Hv. Yield stress of ternary and quaternary was observed to be enhanced by 10 MPa and 9 MPa respectively. Similarly the fracture stress was observed to be increased by 9 MPa and 13.4 MPa. Conversely, the fracture strain of ternary and quaternary alloys was reduced by 0.5% and 0.35% respectively. From these results it can be established that aging at 600 °C is beneficial to improve the mechanical properties of both alloys however, quaternary alloy responded more actively as compared to ternary alloy.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

15-22

Citation:

Online since:

February 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.Ma, I. Karaman, and R.D. Noebe, High Temperature Shape Memory Alloys, Inter. Mater. Rev.55(2010) 257-315.

DOI: 10.1179/095066010x12646898728363

Google Scholar

[2] T.Quackenbush and R. McKillip Jr, Selected Applications of Aeropropulsion Actuation and Shape Control Devices Using HTSMAs, Metall. Mater. Trans. A 43(2012) 2870-2881.

DOI: 10.1007/s11661-011-0998-z

Google Scholar

[3] L.Kovarik, F. Yang, A. Garg, D. Diercks, M. Kaufman, R. Noebe, and M. Mills, Structural analysis of a new precipitate phase in high-temperature TiNiPt shape memory alloys, Acta Mater. 58(2010) 4660-4673.

DOI: 10.1016/j.actamat.2010.04.039

Google Scholar

[4] D.Golberg, Y. Xu, Y. Murakami, K. Otsuka, T. Ueki, and H. Horikawa, High-temperature shape memory effect in Ti50Pd50 − xNix (x = 10, 15, 20) alloys, Mater. Lett.22(1995) 241-248.

DOI: 10.1016/0167-577x(94)00256-8

Google Scholar

[5] Y.Xu, S. Shimizu, Y. Suzuki, K. Otsuka, T. Ueki, and K. Mitose, Recovery and recrystallization processes in Ti Pd Ni high-temperature shape memory alloys,Acta Mater.45(1997) 1503-1511.

DOI: 10.1016/s1359-6454(96)00267-4

Google Scholar

[6] J.A.DeCastro, , K.J. Melcher, R.D. Noebe, and D.J. Gaydosh, Development of a numerical model for high-temperature shape memory alloys, Smart Mater. Struc.16(2007) (2080).

DOI: 10.1088/0964-1726/16/6/011

Google Scholar

[7] A.Stebner, , S. Padula, R. Noebe, B. Lerch, and D. Quinn, Development, Characterization, and Design Considerations of Ni19.5Ti50.5 Pd25Pt5 High-temperature Shape Memory Alloy Helical Actuators, J. Intell. Mater. Sys. Struc. 20(2009) 2107-2126.

DOI: 10.1177/1045389x09347018

Google Scholar

[8] K.Atli, I. Karaman, R. Noebe, A. Garg, Y. Chumlyakov, and I. Kireeva, Shape memory characteristics of Ti49.5Ni25Pd25Sc0.5 high-temperature shape memory alloy after severe plastic deformation, Acta Mater.59(2011)4747-4760.

DOI: 10.1016/j.actamat.2011.04.009

Google Scholar

[9] B.Kockar, K. Atli, J. Ma, M. Haouaoui, I. Karaman, M. Nagasako, and R. Kainuma, Role of severe plastic deformation on the cyclic reversibility of a Ti50. 3Ni33. 7Pd16 high temperature shape memory alloy, Acta Mater. 58(2010) 6411-6420.

DOI: 10.1016/j.actamat.2010.08.003

Google Scholar

[10] D. Angst, P. Thoma and M. Kao, The effect of hafnium content on the transformation temperatures of Ni49Ti51-xHfx. Shape memory alloys, J. Phys. 4 (1995) 747-752.

DOI: 10.1051/jp4/199558747

Google Scholar

[11] S. Hsieh and S. Wu,A study on ternary Ti-rich TiNiZr shape memory alloys, Mater. Charact. 41(1998) 151-162.

DOI: 10.1016/s1044-5803(98)00032-1

Google Scholar

[12] Z. Pu, H. Tseng and K. Wu, Martensite transformation and shape memory effect of NiTi-Zr high-temperature shape memory alloys, Smart Mater. Struc. Proc. 2441(1995) 171.

DOI: 10.1117/12.209815

Google Scholar

[13] K. Atli, I. Karaman, R. Noebe, A. Garg, Y. Chumlyakov, and I. Kireeva, Improvement in the Shape Memory Response of Ti50.5Ni24.5Pd25 High-Temperature Shape Memory Alloy with Scandium Microalloying, Metall. Mater. Trans. A41(2010) 2485-2497.

DOI: 10.1007/s11661-010-0245-z

Google Scholar

[14] G.S. Bigelow, S.A. Padula II, A. Garg, D. Gaydosh, and R.D. Noebe, Characterization of ternary NiTiPd high-temperature shape-memory alloys under load-biased thermal cycling, Metall. Mater. Trans. A41(2010) 3065-3079.

DOI: 10.1007/s11661-010-0365-5

Google Scholar

[15] K. Atli, B. Franco, I. Karaman, D. Gaydosh, and R. Noebe, Influence of crystallographic compatibility on residual strain of TiNi based shape memory alloys during thermo-mechanical cycling, Mater. Sci. Eng. A 574 (2013) 9-16.

DOI: 10.1016/j.msea.2013.02.035

Google Scholar

[16] K. Atli, I. Karaman, and R. Noebe, Work output of the two-way shape memory effect in Ti50.5Ni24.5Pd25 high-temperature shape memory alloy, Scri. Mater.65(2011) 903-906.

DOI: 10.1016/j.scriptamat.2011.08.006

Google Scholar

[17] W.S. Yang and D. Mikkola,  Ductilization of Ti-Ni-Pd shape memory alloys with boron additions, Scri. Metall. Mater.28(1993) 161-166.

DOI: 10.1016/0956-716x(93)90556-8

Google Scholar

[18] Y.Suzuki, Y. Xu, S. Morito, K. Otsuka, and K. Mitose, Effects of boron addition on microstructure and mechanical properties of Ti–Td–Ni high-temperature shape memory alloys, Mater. Lett.36(1998) 85-94.

DOI: 10.1016/s0167-577x(98)00009-3

Google Scholar

[19] IM Khan, HY Kim, T Nam, S Miyazaki, Effect of Cu addition on the high temperature shape memory properties of Ti50Ni25Pd25 alloy, J. All. Comp. 577 (2013)S383-S387.

DOI: 10.1016/j.jallcom.2011.12.116

Google Scholar

[20] K. Ramaiah, C. Saikrishna, S. Bhaumik, Microstructure and transformation behaviour of Ni75−XTiXPd25 high temperature shape memory alloys,J. All. Comp.554 (2012) 319–326.

DOI: 10.1016/j.jallcom.2012.11.165

Google Scholar

[21] S.u. Rehman, M. Khan, A. Nusair Khan, M. Imran Khan, L. Ali, and S.H. Imran Jaffery, Quaternary alloying of copper with Ti50Ni25Pd25 high temperature shape memory alloys,Mater. Sci. Eng. A 763(2019) 138148.

DOI: 10.1016/j.msea.2019.138148

Google Scholar

[22] S.Shimizu, Y. Xu, E. Okunishi, S. Tanaka, K. Otsuka, and K. Mitose, Improvement of shape memory characteristics by precipitation-hardening of TiPdNi alloys, Mater. Lett. 34(1998) 23-29.

DOI: 10.1016/s0167-577x(97)00134-1

Google Scholar

[23] S.u. Rehman, M. Khan, A. Nusair Khan, M. Imran Khan, L. Ali, and S.H. Imran Jaffery, Effect of precipitation hardening and thermomechanical training on microstructure and shape memory properties of Ti50Ni15Pd25Cu10high temperature shape memory alloys, J. All. Comp.616 (2014)275-283.

DOI: 10.1016/j.jallcom.2014.07.116

Google Scholar

[24] J. Kim and S. Miyazaki, Effect of nano-scaled precipitates on shape memory behavior of Ti-50.9 at.% Ni alloy, Acta Mater. 53(2005) 4545-4554.

DOI: 10.1016/j.actamat.2005.06.009

Google Scholar

[25] J. Kim, Y. Liu, and S. Miyazaki, Ageing-induced two-stage R-phase transformation in Ti–50.9 at.% Ni,Acta Mater. 52(2004) 487-499.

DOI: 10.1016/j.actamat.2003.09.032

Google Scholar

[26] P. Filip, and K. Mazanec, On precipitation kinetics in TiNi shape memory alloys, Scri. Mater. 45(2001) 701-707.

DOI: 10.1016/s1359-6462(01)01082-x

Google Scholar

[27] G. Bigelow, A. Garg, S. Padula Ii, D. Gaydosh, and R. Noebe, Load-biased shape-memory and superelastic properties of a precipitation strengthened high-temperature Ni50.3Ti29.7Hf20 alloy,Scri. Mater. 64(2011) 725-728.

DOI: 10.1016/j.scriptamat.2010.12.028

Google Scholar

[28] R. Delville, and D. Schryvers, Transmission electron microscopy study of combined precipitation of Ti2Ni (Pd) and Ti2Pd (Ni) in a Ti50Ni30Pd20 alloy, Intermetall.18(2010)2353-2360.

DOI: 10.1016/j.intermet.2010.08.006

Google Scholar

[29] S.u.Rehman, M. Khan, A. Nusair Khan, L. Ali, S. Zaman, M. Waseem, and S.H.I. Jaffery, Transformation behavior and shape memory properties of Ti50Ni15Pd25Cu10 high temperature shape memory alloy at various aging temperatures, Mater. Sci. Eng. A 619 (2014) 171-179.

DOI: 10.1016/j.msea.2014.09.081

Google Scholar

[30] P. K. Kumar, U. Desai, J.A. Monroe, D.C. Lagoudas, I. Karaman, G. Bigelow, and R.D. Noebe, Experimental investigation of simultaneous creep, plasticity and transformation of Ti50.5Pd30Ni19.5 high temperature shape memory alloy during cyclic actuation, Mater. Sci. Eng. A 530 (2011) 117-127.

DOI: 10.1016/j.msea.2011.09.051

Google Scholar

[31] P. R.S Hiroaki Okamoto, Linda Kacprzak, Binary alloy phase diagrams, ed. T B Massalski; H Okamoto,(1990).

Google Scholar

[32] K. Atli, I. Karaman, R. Noebe, A. Garg, Y. Chumlyakov, and I. Kireeva, Shape memory characteristics of Ti49.5Ni25Pd25Sc0.5 high-temperature shape memory alloy after severe plastic deformation, Acta Mater. 59(2011) 4747 – 4760.

DOI: 10.1016/j.actamat.2011.04.009

Google Scholar

[33] K. Ramaiah, C. Saikrishna, J. Bhagyaraj, and S. Bhaumik, Influence of Sc addition on microstructure and transformation behaviour of Ni24.7Ti50.3Pd25.0 high temperature shape memory alloy, Intermetall. 40 (2013) 10-18.

DOI: 10.1016/j.intermet.2013.03.023

Google Scholar