[1]
J.Ma, I. Karaman, and R.D. Noebe, High Temperature Shape Memory Alloys, Inter. Mater. Rev.55(2010) 257-315.
DOI: 10.1179/095066010x12646898728363
Google Scholar
[2]
T.Quackenbush and R. McKillip Jr, Selected Applications of Aeropropulsion Actuation and Shape Control Devices Using HTSMAs, Metall. Mater. Trans. A 43(2012) 2870-2881.
DOI: 10.1007/s11661-011-0998-z
Google Scholar
[3]
L.Kovarik, F. Yang, A. Garg, D. Diercks, M. Kaufman, R. Noebe, and M. Mills, Structural analysis of a new precipitate phase in high-temperature TiNiPt shape memory alloys, Acta Mater. 58(2010) 4660-4673.
DOI: 10.1016/j.actamat.2010.04.039
Google Scholar
[4]
D.Golberg, Y. Xu, Y. Murakami, K. Otsuka, T. Ueki, and H. Horikawa, High-temperature shape memory effect in Ti50Pd50 − xNix (x = 10, 15, 20) alloys, Mater. Lett.22(1995) 241-248.
DOI: 10.1016/0167-577x(94)00256-8
Google Scholar
[5]
Y.Xu, S. Shimizu, Y. Suzuki, K. Otsuka, T. Ueki, and K. Mitose, Recovery and recrystallization processes in Ti Pd Ni high-temperature shape memory alloys,Acta Mater.45(1997) 1503-1511.
DOI: 10.1016/s1359-6454(96)00267-4
Google Scholar
[6]
J.A.DeCastro, , K.J. Melcher, R.D. Noebe, and D.J. Gaydosh, Development of a numerical model for high-temperature shape memory alloys, Smart Mater. Struc.16(2007) (2080).
DOI: 10.1088/0964-1726/16/6/011
Google Scholar
[7]
A.Stebner, , S. Padula, R. Noebe, B. Lerch, and D. Quinn, Development, Characterization, and Design Considerations of Ni19.5Ti50.5 Pd25Pt5 High-temperature Shape Memory Alloy Helical Actuators, J. Intell. Mater. Sys. Struc. 20(2009) 2107-2126.
DOI: 10.1177/1045389x09347018
Google Scholar
[8]
K.Atli, I. Karaman, R. Noebe, A. Garg, Y. Chumlyakov, and I. Kireeva, Shape memory characteristics of Ti49.5Ni25Pd25Sc0.5 high-temperature shape memory alloy after severe plastic deformation, Acta Mater.59(2011)4747-4760.
DOI: 10.1016/j.actamat.2011.04.009
Google Scholar
[9]
B.Kockar, K. Atli, J. Ma, M. Haouaoui, I. Karaman, M. Nagasako, and R. Kainuma, Role of severe plastic deformation on the cyclic reversibility of a Ti50. 3Ni33. 7Pd16 high temperature shape memory alloy, Acta Mater. 58(2010) 6411-6420.
DOI: 10.1016/j.actamat.2010.08.003
Google Scholar
[10]
D. Angst, P. Thoma and M. Kao, The effect of hafnium content on the transformation temperatures of Ni49Ti51-xHfx. Shape memory alloys, J. Phys. 4 (1995) 747-752.
DOI: 10.1051/jp4/199558747
Google Scholar
[11]
S. Hsieh and S. Wu,A study on ternary Ti-rich TiNiZr shape memory alloys, Mater. Charact. 41(1998) 151-162.
DOI: 10.1016/s1044-5803(98)00032-1
Google Scholar
[12]
Z. Pu, H. Tseng and K. Wu, Martensite transformation and shape memory effect of NiTi-Zr high-temperature shape memory alloys, Smart Mater. Struc. Proc. 2441(1995) 171.
DOI: 10.1117/12.209815
Google Scholar
[13]
K. Atli, I. Karaman, R. Noebe, A. Garg, Y. Chumlyakov, and I. Kireeva, Improvement in the Shape Memory Response of Ti50.5Ni24.5Pd25 High-Temperature Shape Memory Alloy with Scandium Microalloying, Metall. Mater. Trans. A41(2010) 2485-2497.
DOI: 10.1007/s11661-010-0245-z
Google Scholar
[14]
G.S. Bigelow, S.A. Padula II, A. Garg, D. Gaydosh, and R.D. Noebe, Characterization of ternary NiTiPd high-temperature shape-memory alloys under load-biased thermal cycling, Metall. Mater. Trans. A41(2010) 3065-3079.
DOI: 10.1007/s11661-010-0365-5
Google Scholar
[15]
K. Atli, B. Franco, I. Karaman, D. Gaydosh, and R. Noebe, Influence of crystallographic compatibility on residual strain of TiNi based shape memory alloys during thermo-mechanical cycling, Mater. Sci. Eng. A 574 (2013) 9-16.
DOI: 10.1016/j.msea.2013.02.035
Google Scholar
[16]
K. Atli, I. Karaman, and R. Noebe, Work output of the two-way shape memory effect in Ti50.5Ni24.5Pd25 high-temperature shape memory alloy, Scri. Mater.65(2011) 903-906.
DOI: 10.1016/j.scriptamat.2011.08.006
Google Scholar
[17]
W.S. Yang and D. Mikkola, Ductilization of Ti-Ni-Pd shape memory alloys with boron additions, Scri. Metall. Mater.28(1993) 161-166.
DOI: 10.1016/0956-716x(93)90556-8
Google Scholar
[18]
Y.Suzuki, Y. Xu, S. Morito, K. Otsuka, and K. Mitose, Effects of boron addition on microstructure and mechanical properties of Ti–Td–Ni high-temperature shape memory alloys, Mater. Lett.36(1998) 85-94.
DOI: 10.1016/s0167-577x(98)00009-3
Google Scholar
[19]
IM Khan, HY Kim, T Nam, S Miyazaki, Effect of Cu addition on the high temperature shape memory properties of Ti50Ni25Pd25 alloy, J. All. Comp. 577 (2013)S383-S387.
DOI: 10.1016/j.jallcom.2011.12.116
Google Scholar
[20]
K. Ramaiah, C. Saikrishna, S. Bhaumik, Microstructure and transformation behaviour of Ni75−XTiXPd25 high temperature shape memory alloys,J. All. Comp.554 (2012) 319–326.
DOI: 10.1016/j.jallcom.2012.11.165
Google Scholar
[21]
S.u. Rehman, M. Khan, A. Nusair Khan, M. Imran Khan, L. Ali, and S.H. Imran Jaffery, Quaternary alloying of copper with Ti50Ni25Pd25 high temperature shape memory alloys,Mater. Sci. Eng. A 763(2019) 138148.
DOI: 10.1016/j.msea.2019.138148
Google Scholar
[22]
S.Shimizu, Y. Xu, E. Okunishi, S. Tanaka, K. Otsuka, and K. Mitose, Improvement of shape memory characteristics by precipitation-hardening of TiPdNi alloys, Mater. Lett. 34(1998) 23-29.
DOI: 10.1016/s0167-577x(97)00134-1
Google Scholar
[23]
S.u. Rehman, M. Khan, A. Nusair Khan, M. Imran Khan, L. Ali, and S.H. Imran Jaffery, Effect of precipitation hardening and thermomechanical training on microstructure and shape memory properties of Ti50Ni15Pd25Cu10high temperature shape memory alloys, J. All. Comp.616 (2014)275-283.
DOI: 10.1016/j.jallcom.2014.07.116
Google Scholar
[24]
J. Kim and S. Miyazaki, Effect of nano-scaled precipitates on shape memory behavior of Ti-50.9 at.% Ni alloy, Acta Mater. 53(2005) 4545-4554.
DOI: 10.1016/j.actamat.2005.06.009
Google Scholar
[25]
J. Kim, Y. Liu, and S. Miyazaki, Ageing-induced two-stage R-phase transformation in Ti–50.9 at.% Ni,Acta Mater. 52(2004) 487-499.
DOI: 10.1016/j.actamat.2003.09.032
Google Scholar
[26]
P. Filip, and K. Mazanec, On precipitation kinetics in TiNi shape memory alloys, Scri. Mater. 45(2001) 701-707.
DOI: 10.1016/s1359-6462(01)01082-x
Google Scholar
[27]
G. Bigelow, A. Garg, S. Padula Ii, D. Gaydosh, and R. Noebe, Load-biased shape-memory and superelastic properties of a precipitation strengthened high-temperature Ni50.3Ti29.7Hf20 alloy,Scri. Mater. 64(2011) 725-728.
DOI: 10.1016/j.scriptamat.2010.12.028
Google Scholar
[28]
R. Delville, and D. Schryvers, Transmission electron microscopy study of combined precipitation of Ti2Ni (Pd) and Ti2Pd (Ni) in a Ti50Ni30Pd20 alloy, Intermetall.18(2010)2353-2360.
DOI: 10.1016/j.intermet.2010.08.006
Google Scholar
[29]
S.u.Rehman, M. Khan, A. Nusair Khan, L. Ali, S. Zaman, M. Waseem, and S.H.I. Jaffery, Transformation behavior and shape memory properties of Ti50Ni15Pd25Cu10 high temperature shape memory alloy at various aging temperatures, Mater. Sci. Eng. A 619 (2014) 171-179.
DOI: 10.1016/j.msea.2014.09.081
Google Scholar
[30]
P. K. Kumar, U. Desai, J.A. Monroe, D.C. Lagoudas, I. Karaman, G. Bigelow, and R.D. Noebe, Experimental investigation of simultaneous creep, plasticity and transformation of Ti50.5Pd30Ni19.5 high temperature shape memory alloy during cyclic actuation, Mater. Sci. Eng. A 530 (2011) 117-127.
DOI: 10.1016/j.msea.2011.09.051
Google Scholar
[31]
P. R.S Hiroaki Okamoto, Linda Kacprzak, Binary alloy phase diagrams, ed. T B Massalski; H Okamoto,(1990).
Google Scholar
[32]
K. Atli, I. Karaman, R. Noebe, A. Garg, Y. Chumlyakov, and I. Kireeva, Shape memory characteristics of Ti49.5Ni25Pd25Sc0.5 high-temperature shape memory alloy after severe plastic deformation, Acta Mater. 59(2011) 4747 – 4760.
DOI: 10.1016/j.actamat.2011.04.009
Google Scholar
[33]
K. Ramaiah, C. Saikrishna, J. Bhagyaraj, and S. Bhaumik, Influence of Sc addition on microstructure and transformation behaviour of Ni24.7Ti50.3Pd25.0 high temperature shape memory alloy, Intermetall. 40 (2013) 10-18.
DOI: 10.1016/j.intermet.2013.03.023
Google Scholar