[1]
C. Grandvallet, F. Vignat, F. Pourroy, G. Prudhomme, N. Béraud, N. Béraud, & N. Béraud: An Approach to Model Additive Manufacturing Process Rules. International Journal of Mechanical Engineering and Robotics Research, 7(1) (2018), pp.9-15.
DOI: 10.18178/ijmerr.7.1.9-15
Google Scholar
[2]
D. Yang, C. He & G. Zhang: Forming characteristics of thin-wall steel parts by double electrode GMAW based additive manufacturing. Journal of Materials Processing Technology, 227 (2016), pp.153-160.
DOI: 10.1016/j.jmatprotec.2015.08.021
Google Scholar
[3]
J. Xiong, G. Zhang, Z. Qiu & Y. Li: Vision-sensing and bead width control of a single-bead multi-layer part: material and energy savings in GMAW-based rapid manufacturing. Journal of Cleaner Production, 41 (2013), pp.82-88.
DOI: 10.1016/j.jclepro.2012.10.009
Google Scholar
[4]
I. A. Ibrahim, S. A. Mohamat, A. Amir, & A. Ghalib: The Effect of Gas Metal Arc Welding (GMAW) processes on different welding parameters. Procedia Engineering, 41 (2012), pp.1502-1506.
DOI: 10.1016/j.proeng.2012.07.342
Google Scholar
[5]
N. Ghosh, P. K. Pal, & G. Nandi: Parametric optimization of MIG welding on 316L austenitic stainless steel by Taguchi method. International Journal of Mechanical Engineering and Robotics Research, 6(2) (2017), pp.88-95.
DOI: 10.18178/ijmerr.6.2.88-95
Google Scholar
[6]
X. Xu, J. Kong, J. Lin, & R. Zheng: Study on a Rolling Process for obtaining ferrite-martensitic (DP) microstructures in ER70S-6 steel. Rev. Adv. Mater. Sci, Vol. 33 (2013), pp.348-353.
Google Scholar
[7]
J. Lin, Y. Lv, Y. Liu, Z. Sun, K. Wang, Z. Li & B. Xu: Microstructural evolution and mechanical property of Ti-6Al-4V wall deposited by continuous plasma arc additive manufacturing without post heat treatment. Journal of the mechanical behavior of biomedical materials, Vol. 69 (2017), pp.19-29.
DOI: 10.1016/j.jmbbm.2016.12.015
Google Scholar
[8]
J. Gu, J. Ding, S. W. Williams, H. Gu, J. Bai, Y. Zhai & P. Ma: The strengthening effect of inter-layer cold working and post-deposition heat treatment on the additively manufactured Al–6.3 Cu alloy. Materials Science and Engineering: A, 651 (2016), pp.18-26.
DOI: 10.1016/j.msea.2015.10.101
Google Scholar
[9]
R. Sun, L. Li, Y. Zhu, W. Guo, P. Peng, B. Cong & L. Liu: Microstructure, residual stress and tensile properties control of wire-arc additive manufactured 2319 aluminum alloy with laser shock peening. Journal of Alloys and Compounds, 747 (2018), pp.255-265.
DOI: 10.1016/j.jallcom.2018.02.353
Google Scholar
[10]
J. F. Wang, Q. J. Sun, H. Wang, J. P. Liu & J. C. Feng: Effect of location on microstructure and mechanical properties of additive layer manufactured Inconel 625 using gas tungsten arc welding. Materials Science and Engineering: A, 676 (2016), pp.395-405.
DOI: 10.1016/j.msea.2016.09.015
Google Scholar
[11]
M. Liberini, A. Astarita, G. Campatelli, A. Scippa, F. Montevecchi, G. Venturini, & A. Squillace: Selection of optimal process parameters for wire arc additive manufacturing. Procedia Cirp, 62 (2017), pp.470-474.
DOI: 10.1016/j.procir.2016.06.124
Google Scholar
[12]
Y. Zhang, Y. Chen, P. Li, & A. T. Male: Weld deposition-based rapid prototyping: a preliminary study. Journal of Materials Processing Technology, 135(2-3) (2003), pp.347-357.
DOI: 10.1016/s0924-0136(02)00867-1
Google Scholar
[13]
J. Prado-Cerqueira, A. Camacho, J. Diéguez, Á. Rodríguez-Prieto, A. Aragón, C. Lorenzo-Martín, & Á. anguas-Gil: Analysis of Favorable Process Conditions for the Manufacturing of Thin-Wall Pieces of Mild Steel Obtained by Wire and Arc Additive Manufacturing (WAAM). Materials, 11(8) (2018), p.1449.
DOI: 10.3390/ma11081449
Google Scholar