Study of Ni2+/Ni3+ Redox Couple and Electrocatalytic Responses of Ni on Nitrogen-Doped Carbon for Urea Non-Enzymatic Detection

Article Preview

Abstract:

A novel redox couple of metallic nickel (Ni) catalyst can become a great candidate of non-enzymatic detection. By taking advantage of fast electron transfer, Ni redox couples can be tailored as pseudo-enzyme in urea measurement. In this study, Ni catalyst on nitrogen doped carbon (Ni-NC) was synthesized and characterized morphological, elemental, and electrocatalytic properties in comparison to different configuration of pure nickel (Ni), Ni with carbon (Ni-C), and bare carbon electrode, assessed by cyclic voltammetry and differential pulse voltammetry. By examining various Ni redox couples in rapid electron transfer process, the prominent anodic and cathodic peaks of Ni2+/Ni3+ were applicable to detect urea in the detection range of 1-20 mM, with an excellent sensitivity and relative standard deviation of 1.634 μA.mM-1 (R2 of 0.989) and 4.89%, respectively. Therefore, Ni-NC can find practical applications for material sensing device toward non-enzymatic urea measurement.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

102-107

Citation:

Online since:

February 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Felix, A.N. Grace and R. Jayavel: J. Phys. Chem. Solids Vol. 122 (2018), pp.255-260.

Google Scholar

[2] A. Diouf, S. Motia, N. El Alami El Hassani, N. El Bari and B. Bouchikhi: J.Electroanal Chem. Vol. 788 (2017), pp.44-53.

DOI: 10.1016/j.jelechem.2017.01.068

Google Scholar

[3] N. Friedrich, T. Skaaby, M. Pietzner, K. Budde, B.H. Thuesen, M. Nauck and A. Linneberg: Diabetes Metab. Vol. 44 (2018), pp.261-268.

DOI: 10.1016/j.diabet.2017.05.007

Google Scholar

[4] S. Amin, A. Tahira, A. Solangi, V. Beni, J.R. Morante, X. Liu, M. Falhman, R. Mazzaro, Z.H. Ibupoto and A. Vomiero: RSC Adv. Vol. 9 (2019), pp.14443-14451.

DOI: 10.1039/c9ra00909d

Google Scholar

[5] B. Xia, T. wang, X. Jiang, J. Li, T. Zhang, P. Xi, D. Gao and D. Xue: J. Mater. Chem. A. Vol. 7 (2019), pp.4729-4733.

Google Scholar

[6] I. Zilbermann, E. Maimon, H. Cohen and D. Meyerstein: Chem. Rev. Vol. 105 (2005), pp.2609-2626.

DOI: 10.1021/cr030717f

Google Scholar

[7] M. Asgari and E. Lohrasbi: Advances in Analytical Chemistry Vol. 5 (2015), pp.9-18.

Google Scholar

[8] E.E. Abd El Aal and S.M. Abd El Haleem: J Fail. Anal. and Preven. Vol. 8 (2008), pp.557-563.

DOI: 10.1007/s11668-008-9180-3

Google Scholar

[9] M. Abdallah, M. Salem, I. Zaafarany, A. Fawzy and A. Fattah: Orient j. chem. Vol. 33 (2017), pp.2875-2883.

Google Scholar

[10] X. Niu, M. Lan, H. Zhao and C. Chen: Anal. Chem. Vol. 85 (2013), pp.3561-3569.

Google Scholar

[11] P. Tekacharin, V. Chobaomsup, A. Kamchaddaskorn, O. Jongprateep, M. Saisriyoot, K. Surawathanawises, Y. Boonyongmaneerat and R. Techapiesancharoenkij: J. Phys. Conf. Ser. Vol. 1144 (2018), p.012084.

DOI: 10.1088/1742-6596/1144/1/012084

Google Scholar

[12] X. Gao, X. Du, D. Liu, H. Gao, P. Wang and J. Yang: Sci. Rep. Vol. 10 (2020), p.1365.

Google Scholar

[13] H. Liu, Q. Zhao, J. Liu, X. Ma, Y. Rao, X. Shao, Z. Li, W. Wu, H. Ning and M. Wu: Appl.Surf. Sci. Vol. 423 (2017), pp.909-916.

Google Scholar

[14] M. Inagaki, M. Toyoda, Y. Soneda and T. Morishita: Carbon. Vol. 132 (2018), pp.104-140.

Google Scholar

[15] L. He, F. Weniger, H. Neumann and M. Beller: Angewandte Chemie Vol. 55, Issue 41 (2016), pp.12582-12594.

Google Scholar