Simulation of Fe-Ti-Sb Thernary Phase Diagram at Temperatures above 900 K

Article Preview

Abstract:

Heusler alloys have been considered as one of the most promising thermoelectric materials for electrical power generation in a temperature range of 500–800 °C. Establishment of phase diagrams allows one to predict formation, equilibria, and stability of phases in of these ternary alloys. In this work we report on the simulation and investigation of phase diagram and phase equilibria in ternary Ti-Fe-Sb system which is of considerable interest for thermoelectric applications. The simulation was carried out using the CALPHAD method in Pandat software. The existence of the thermoelectric Heusler TiFe1.5Sb phase was revealed in a temperature range from 970 to 1070 K. The equilibria between TiFe1.5Sb and other phases were determined. The entropy of formation was calculated for the phases existing at 970, 1020 and 1070 K using a fitting approach. A narrow equilibrium region containing pure body centered cubic Fe and TiFe1.5Sb was found.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

114-119

Citation:

Online since:

February 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G.J. Snyder, in: Energy harvesting technologies, edited by S. Priya and D.J. Inman, Springer Science+Business Media, LLC, New York (2009), p.325–335.

Google Scholar

[2] C. Uher: Materials Aspect of Thermoelectricity (CRC Press, Boca Raton, 2017).

Google Scholar

[3] K. Koumoto and T. Mori: Thermoelectric Nanomaterials (Springer-Verlag Berlin Heidelberg, 2013).

Google Scholar

[4] Q. Zhang, F. Cao, W. Liu, K. Lukas, B. Yu, S. Chen, C. Opeil, D. Broido, G. Chen and Z. Ren: J. Am. Chem. Soc. Vol. 134 (2012), p.10031.

Google Scholar

[5] A.D. LaLonde, Y. Pei and G.J. Snyder: Energy Env. Sci. Vol 4 (2011), p. (2090).

Google Scholar

[6] G. Rogl and P. Rogl: Curr. Opin. Green Sustain. Chem. Vol. 4 (2017), p.50.

Google Scholar

[7] V.V. Khovaylo, T.A. Korolkov, A.I. Voronin, M.V. Gorshenkov and A.T. Burkov: J. Mater. Chem. A Vol. 5 (2017), p.3541.

Google Scholar

[8] A.A. Usenko, D.O. Moskovskikh, M.V. Gorshenkov, A.V. Korotitski, S.D. Kaloshkin, A.I. Voronin and V.V. Khovaylo: Scripta Mater. Vol. 96 (2015), p.9.

DOI: 10.1016/j.scriptamat.2014.10.001

Google Scholar

[9] A. Usenko, D. Moskovskikh, M. Gorshenkov, A. Voronin, A. Stepashkin, S. Kaloshkin, D. Arkhipov and V. Khovaylo: Scripta Mater. Vol. 127 (2017), p.63.

DOI: 10.1016/j.scriptamat.2016.09.010

Google Scholar

[10] S.J. Poon, in: Recent Trends in Thermoelectric Materials Research II, edited by T.M. Tritt (Semiconductors and Semimetals, Vol. 70. Academic Press, 2001).

Google Scholar

[11] J.W.G. Bos and R.A. Downie: J. Phys.: Condens. Matter Vol. 26 (2014), p.433201.

Google Scholar

[12] T. Zhu, C. Fu, H. Xie, Y. Liu and X. Zhao: Adv. Energy Mater. Vol. 5 (2015), p.1500588.

Google Scholar

[13] W. Wang, X. Li, M. Gu, Y. Xing and Y. Bao: Materials Vol. 13 (2020), p.155.

Google Scholar

[14] C. Fu, S. Bai, Y. Liu, Y. Tang, L. Chen, X. Zhao and T. Zhu: Nat. Commun. Vol. 6 (2015), p.8144.

Google Scholar

[15] V.V. Khovaylo, A.I. Voronin, V.Yu. Zueva, M.A. Seredina and R. Chatterdjee: Semiconductors Vol. 51 (2017), p.718.

DOI: 10.1134/s1063782617060136

Google Scholar

[16] S. Guo, K. Yang, Z. Zeng and Y. Zhang: Phys. Chem. Chem. Phys. Vol. 20 (2018), p.14441.

Google Scholar

[17] T. Graf, C. Felser and S.S.P. Parkin: Prog. Solid State Chem. Vol. 39 (2011), p.1.

Google Scholar

[18] Y. Nishino, M. Kato, S. Asano, K. Soda, M. Hayasaki and U. Mizutani: Phys. Rev. Lett. Vol. 79 (1997), p. (1909).

Google Scholar

[19] H. Okamura, J. Kawahara, T. Nanba, S. Kimura, K. Soda, U. Mizutani, Y. Nishino, M. Kato, I. Shimoyama, H. Miura, K. Fukui, K. Nakagawa, H. Nakagawa and T. Kinoshita: Phys. Rev. Lett. Vol. 84 (2000), p.3674.

DOI: 10.1103/physrevlett.84.3674

Google Scholar

[20] C.S. Lue and Y.K. Kuo: Phys. Rev. B Vol. 66 (2002), p.085121.

Google Scholar

[21] K. Renard, A. Mori, Y. Yamada, S. Tanaka, H. Miyazaki and Y. Nishino: J. Appl. Phys. Vol. 115 (2014), p.033707.

Google Scholar

[22] R.O. Suzuki and T. Kyono: J. Alloys Comp. Vol. 377 (2004), p.38.

Google Scholar

[23] A. Slebarski, M.B. Maple, E.J. Freeman, C. Sirvent, D. Tworuszka, M. Orzechowska, A. Wrona, A. Jezierski, S. Chiuzbaian and M. Neumann: Phys. Rev. B Vol. 62 (2000), p.3296.

DOI: 10.1103/physrevb.62.3296

Google Scholar

[24] A. H. Reshak: RSC Adv. Vol. 4 (2014), p.39565.

Google Scholar

[25] T.M. Bhat and D.C. Gupta: RSC Adv. Vol. 6 (2016), p.80302.

Google Scholar

[26] E.I. Shreder, A.D. Svyazhin and K.A. Fomina: Phys. Metal. Metall. Vol. 113 (2012), p.146.

Google Scholar

[27] A.I. Voronin, V.Yu. Zueva, D.Yu. Karpenkov, D.O. Moskovskikh, A.P. Novitskii, H. Miki and V.V. Khovaylo: Semiconductors Vol. 51 (2017), p.891.

DOI: 10.1134/s1063782617070363

Google Scholar

[28] N. Naghibolashrafi, S. Keshavarz, V.I. Hegde, A. Gupta, W.H. Butler, J. Romero, K. Munira, P. LeClair, D. Mazumdar, J. Ma, A.W. Ghosh and C. Wolverton: Phys. Rev. B Vol. 93 (2016), p.104424.

DOI: 10.1103/physrevb.93.104424

Google Scholar

[29] A. Tavassoli, A. Grytsiv, G. Rogl, V.V. Romaka, H. Michor, M. Reissner, E. Bauer, M. Zehetbauer and P. Rogl: Dalton Trans. Vol. 47 (2018), p.879.

DOI: 10.1039/c7dt03787b

Google Scholar

[30] N. Saunders and A.P. Miodownik: CALPHAD (Calculation of Phase Diagrams): A Comprehensive Guide, 1st edition (Pergamon, London,1998).

Google Scholar

[31] M. Hilert: Phase Equilibria, Phase Diagrams and Phase Transformations: Their Thermodynamic Basis, 2nd edition (Cambridge University Press, 2007).

DOI: 10.1017/cbo9780511812781.001

Google Scholar

[32] G. Melnyk and W. Tremel: J. Alloys Comp. Vol. 349 (2003), p.164.

Google Scholar

[33] A. Walle, C. Nataraj and Z.K. Liu: Calphad Vol. 61 (2018), p.173.

Google Scholar

[34] C. Guo, C. Li, X. Zheng and Z. Du: Calphad Vol. 38 (2012), p.155.

Google Scholar

[35] H. Bo, J. Wang, L. Duarte, C. Leinenbach, L.B. Liu, H.S. Liu and Z.P. Jin: Trans. Nonferr. Metal. Soc. Vol. 22 (2012), p.2204.

Google Scholar

[36] C. Li, D. Zhu, Y. Zhang, Z. Du, C. Guo, J. Li and J.C. Tedenac: Calphad Vol. 47 (2014), p.23.

Google Scholar

[37] A.T. Dinsdale: Calphad Vol. 15 (1991), p.317.

Google Scholar