Fabrication of Carbon Nanotube/Aluminum Matrix Composites by Ball Milling and Cold Press Processing

Article Preview

Abstract:

Carbon nanotube (CNT) has been one of promising candidates as a reinforcement in metal matrix composites (MMCs) for its variety of excellent properties such as lightweight, high strength etc. It is necessary to disperse CNT to the level of each one in order to lead to efficiently reflect the excellent essential physical properties of CNT in the composites. This research investigates fabrication processes linked with dry ball milling and cold pressing followed by sintering to uniformly disperse CNT in aluminum (Al) matrix. It was found that dispersibility of CNT were improved with increasing ball milling time based on observation of morphology of mixed powders and the composites using SEM. Vickers hardness and tensile strength of CNT/ Al composites increased with increasing ball milling time up to 24 hours, while they were constant or decreased because of increase of voids in case of longer than 24 hours of ball milling time.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

89-97

Citation:

Online since:

March 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.M. Billah, Q. Chen, Al–CNT–Ni composite with significantly increased strength and hardness, SN Applied Sciences, 1:521 | https://doi.org/10.1007/s42452-019-0530-4 (2019).

DOI: 10.1007/s42452-019-0530-4

Google Scholar

[2] A.E. Agboola, R.W. Pike, T.A. Hertwig, H.H. Lou, Conceptual design of carbon nanotube processes, Clean Techn. Environ. Policy; 9: 289-311 (2007).

DOI: 10.1007/s10098-006-0083-2

Google Scholar

[3] H. Hanizam, M.S. Sallehc, M.Z. Omar, A.B. Sulong, Optimisation of mechanical stir casting parameters for fabrication of carbon nanotubes–aluminium alloy composite through Taguchi method, J.Mater.Res.Technol.; 8 (2): 2223-2231 (2019).

DOI: 10.1016/j.jmrt.2019.02.008

Google Scholar

[4] C. Yi, X. Chen, F. Gou, C.M. Dmuchowski, A. Sharma, C. Park, C. Ke, Direct Measurements of the Mechanical Strength of Carbon Nanotube-Aluminum Interfaces, Carbon; 125: 93-102 (2017).

DOI: 10.1016/j.carbon.2017.09.020

Google Scholar

[5] P. Cavaliere, B. Sadeghi, A. Shabani, Carbon nanotube reinforced aluminum matrix composites produced by spark plasma sintering, J. Mater. Sci.; 52: 8618-8629 (2017).

DOI: 10.1007/s10853-017-1086-6

Google Scholar

[6] Y. Liu, C. Geng, Y. Zhu, J. Peng, J. Xu, Hot Deformation Behavior and Intrinsic Workability of Carbon Nanotube-Aluminum Reinforced ZA27 Composites, Journal of Materials Engineering and Performance; 26(4): 1967-1977 (2017).

DOI: 10.1007/s11665-017-2628-4

Google Scholar

[7] A.M.K. Esawi, K. Morsi, A. Sayed, A.A. Gawad, and P. Borah, Fabrication and Properties of Dispersed Carbon Nanotube-Aluminum Composites, Mater. Sci. Eng. A; 508: 167-173 (2009).

DOI: 10.1016/j.msea.2009.01.002

Google Scholar

[8] I. Sridhar, K.R. Narayanan, Processing and characterization of MWCNT reinforced aluminum matrix composites. J. Mater. Sci.; 44(7):1750-1756 (2009).

DOI: 10.1007/s10853-009-3290-5

Google Scholar

[9] K. Matsumoto, T. Takahashi, S. Ishii, M. Jikei, Investigation of Dispersibility of Multi-Walled Carbon Nanotubes Using Polysulfones with Various Structures, Int. J. Soc. Mater. Eng. Resour.; 20 (1): 77-81 (2014).

DOI: 10.5188/ijsmer.20.77

Google Scholar

[10] H. Kwon, D.H. Park, J.F. Silvain, A. Kawasaki, Investigation of carbon nanotube reinforced aluminum matrix composite materials. Compos Sci Technol.; 70(3): 546-550 (2010).

DOI: 10.1016/j.compscitech.2009.11.025

Google Scholar

[11] H. Zare, M. Jahedi, M.R. Toroghinejad, M. Meratian, and M. Knezevic, Microstructure and Mechanical Properties of Carbon Nanotubes Reinforced Aluminum Matrix Composites Synthesized Via Equal-Channel Angular Pressing, Mater. Sci. Eng. A; 670: 205-216 (2016).

DOI: 10.1016/j.msea.2016.06.027

Google Scholar

[12] B. Guo, S. Ni, J. Yi, R. Shen, Z. Tang, Y. Du, M. Song, Microstructures and mechanical properties of carbon nanotubes reinforced pure aluminum composites synthesized by spark plasma sintering and hot rolling. Mater Sci Eng A; 698: 282-288 (2017).

DOI: 10.1016/j.msea.2017.05.068

Google Scholar

[13] T.S. Ghesmati, S.A. Sajjadi, A. Babakhani, W. Lu, Influence of spark plasma sintering and subsequent hot rolling on microstructure and flexural behavior of in-situ TiB and TiC reinforced Ti6Al4V composite. Mater Sci Eng A; 624: 271-278 (2015).

DOI: 10.1016/j.msea.2014.11.036

Google Scholar

[14] A. Esawi, K. Morsi, Dispersion of carbon nanotubes (CNTs) in aluminium powders. Compos. Part A; 38(2): 646-650 (2007).

DOI: 10.1016/j.compositesa.2006.04.006

Google Scholar

[15] K. Morsi, A. Esawi, Effect of mechanical alloying time and carbon nanotube (CNT) content on the evolution of aluminum (Al)–CNT composite powders, J. Mater. Sci.; 42: 4954-4959 (2007).

DOI: 10.1007/s10853-006-0699-y

Google Scholar