[1]
M.M. Billah, Q. Chen, Al–CNT–Ni composite with significantly increased strength and hardness, SN Applied Sciences, 1:521 | https://doi.org/10.1007/s42452-019-0530-4 (2019).
DOI: 10.1007/s42452-019-0530-4
Google Scholar
[2]
A.E. Agboola, R.W. Pike, T.A. Hertwig, H.H. Lou, Conceptual design of carbon nanotube processes, Clean Techn. Environ. Policy; 9: 289-311 (2007).
DOI: 10.1007/s10098-006-0083-2
Google Scholar
[3]
H. Hanizam, M.S. Sallehc, M.Z. Omar, A.B. Sulong, Optimisation of mechanical stir casting parameters for fabrication of carbon nanotubes–aluminium alloy composite through Taguchi method, J.Mater.Res.Technol.; 8 (2): 2223-2231 (2019).
DOI: 10.1016/j.jmrt.2019.02.008
Google Scholar
[4]
C. Yi, X. Chen, F. Gou, C.M. Dmuchowski, A. Sharma, C. Park, C. Ke, Direct Measurements of the Mechanical Strength of Carbon Nanotube-Aluminum Interfaces, Carbon; 125: 93-102 (2017).
DOI: 10.1016/j.carbon.2017.09.020
Google Scholar
[5]
P. Cavaliere, B. Sadeghi, A. Shabani, Carbon nanotube reinforced aluminum matrix composites produced by spark plasma sintering, J. Mater. Sci.; 52: 8618-8629 (2017).
DOI: 10.1007/s10853-017-1086-6
Google Scholar
[6]
Y. Liu, C. Geng, Y. Zhu, J. Peng, J. Xu, Hot Deformation Behavior and Intrinsic Workability of Carbon Nanotube-Aluminum Reinforced ZA27 Composites, Journal of Materials Engineering and Performance; 26(4): 1967-1977 (2017).
DOI: 10.1007/s11665-017-2628-4
Google Scholar
[7]
A.M.K. Esawi, K. Morsi, A. Sayed, A.A. Gawad, and P. Borah, Fabrication and Properties of Dispersed Carbon Nanotube-Aluminum Composites, Mater. Sci. Eng. A; 508: 167-173 (2009).
DOI: 10.1016/j.msea.2009.01.002
Google Scholar
[8]
I. Sridhar, K.R. Narayanan, Processing and characterization of MWCNT reinforced aluminum matrix composites. J. Mater. Sci.; 44(7):1750-1756 (2009).
DOI: 10.1007/s10853-009-3290-5
Google Scholar
[9]
K. Matsumoto, T. Takahashi, S. Ishii, M. Jikei, Investigation of Dispersibility of Multi-Walled Carbon Nanotubes Using Polysulfones with Various Structures, Int. J. Soc. Mater. Eng. Resour.; 20 (1): 77-81 (2014).
DOI: 10.5188/ijsmer.20.77
Google Scholar
[10]
H. Kwon, D.H. Park, J.F. Silvain, A. Kawasaki, Investigation of carbon nanotube reinforced aluminum matrix composite materials. Compos Sci Technol.; 70(3): 546-550 (2010).
DOI: 10.1016/j.compscitech.2009.11.025
Google Scholar
[11]
H. Zare, M. Jahedi, M.R. Toroghinejad, M. Meratian, and M. Knezevic, Microstructure and Mechanical Properties of Carbon Nanotubes Reinforced Aluminum Matrix Composites Synthesized Via Equal-Channel Angular Pressing, Mater. Sci. Eng. A; 670: 205-216 (2016).
DOI: 10.1016/j.msea.2016.06.027
Google Scholar
[12]
B. Guo, S. Ni, J. Yi, R. Shen, Z. Tang, Y. Du, M. Song, Microstructures and mechanical properties of carbon nanotubes reinforced pure aluminum composites synthesized by spark plasma sintering and hot rolling. Mater Sci Eng A; 698: 282-288 (2017).
DOI: 10.1016/j.msea.2017.05.068
Google Scholar
[13]
T.S. Ghesmati, S.A. Sajjadi, A. Babakhani, W. Lu, Influence of spark plasma sintering and subsequent hot rolling on microstructure and flexural behavior of in-situ TiB and TiC reinforced Ti6Al4V composite. Mater Sci Eng A; 624: 271-278 (2015).
DOI: 10.1016/j.msea.2014.11.036
Google Scholar
[14]
A. Esawi, K. Morsi, Dispersion of carbon nanotubes (CNTs) in aluminium powders. Compos. Part A; 38(2): 646-650 (2007).
DOI: 10.1016/j.compositesa.2006.04.006
Google Scholar
[15]
K. Morsi, A. Esawi, Effect of mechanical alloying time and carbon nanotube (CNT) content on the evolution of aluminum (Al)–CNT composite powders, J. Mater. Sci.; 42: 4954-4959 (2007).
DOI: 10.1007/s10853-006-0699-y
Google Scholar