[1]
Tite M S 2008, Ceramic production, provenance and use - A review, Archaeometry 50, 216 - 231.
DOI: 10.1111/j.1475-4754.2008.00391.x
Google Scholar
[2]
Tiwari A, Gerhardt R A, and Szutkowska M 2016, Advanced Ceramic Materials, John Wiley & Sons, Inc. Hoboken, New Jersey, and Scrivener Publishing LLC, Beverly, Massachusetts. ISBN:9781119242444.
DOI: 10.1002/9781119242598
Google Scholar
[3]
Abdrakhimova E S and Abdrakhimov V Z 2012, Characterization of a ceramic composite material based on beidellite clay and ash and slag waste, Solid Fuel Chemistry 46, 185-190.
DOI: 10.3103/s0361521912030020
Google Scholar
[4]
Lin K L, 2006, Feasibility study of using brick made from municipal solid waste incinerator fly ash slag, J. Hazard. Mater. B 137, 1810-1816.
DOI: 10.1016/j.jhazmat.2006.05.027
Google Scholar
[5]
Malchik A G, Litovkin S, Rodionov P V, Kozik V V and Gaydamak M.A. 2016, Analyzing the technology of using ash and slag waste from thermal power plants in the Production of Building Ceramics, IOP Conf. Series: Materials Science and Engineering 127, 012-024.
DOI: 10.1088/1757-899x/127/1/012024
Google Scholar
[6]
Ercenk E, Sen U, Bayrak G and Yilmaz S 2014, Glass and Glass-Ceramics Produced from Fly Ash and Boron Waste, Acta Physica Polonica A 125, 625-628.
DOI: 10.12693/aphyspola.125.626
Google Scholar
[7]
Kłosek-Wawrzyn E and Małolepszy J 2016, The potential use of calcite wastes in the production of clay masonry units, Ceramic Materials 68, 230-235.
Google Scholar
[8]
Kizinievič O, Žurauskienė R, Kizinievič V, and Žurauskas R 2013, Utilisation of sludge waste from water treatment for ceramic products, Constr. Build. Mater. 41, 464–473.
DOI: 10.1016/j.conbuildmat.2012.12.041
Google Scholar
[9]
Monteiro S N, Alexandre J, Margem J I, Sánchez R Vieira C M F 2008, Incorporation of sludge waste from water treatment plant into red ceramic, Constr. Build. Mater, 22, 1281-1287.
DOI: 10.1016/j.conbuildmat.2007.01.013
Google Scholar
[10]
Malaiškiene J, Vaičiene M, and Žurauskiene R 2011, Effectiveness of technogenic waste usage in products of building ceramics and expanded clay concrete, Constr. Build. Mater, 25, 3869-3877.
DOI: 10.1016/j.conbuildmat.2011.04.008
Google Scholar
[11]
Lynn J, Dhir R K and Ghataora G S 2016, Sewage sludge ash characteristics and potential for use in bricks, tiles and glass ceramics, Water Sci. Technol. 74, 17-29.
DOI: 10.2166/wst.2016.040
Google Scholar
[12]
Andreola F, Barbieri L Lancellotti I, Leonelli C and Manfredini T 2016, Recycling of industrial wastes in ceramic manufacturing: State of art and glass case studies, Ceramics International 42, 13333-13338.
DOI: 10.1016/j.ceramint.2016.05.205
Google Scholar
[13]
Latosińska J, Orman Ł and Norbert R 2011, Waste materials for the production of ceramics, Structure & Environment 3, 49-53.
Google Scholar
[14]
Zhu M, Ji R, Li Z, Wang H, Liu L L and Zhang Z 2016, Preparation of glass ceramic foams for thermal insulation applications from coal fly ash and waste glass, Constr. Build. Mater. 112, 398–405.
DOI: 10.1016/j.conbuildmat.2016.02.183
Google Scholar
[15]
Angjusheva B, Fidancevska E and Jovanov V 2012, Production of ceramics from coal fly ash, Chemical Industry & Chemical Engineering Quarterly 18, 245-254.
DOI: 10.2298/ciceq110607001a
Google Scholar
[16]
Adell V, Boccaccini A R and Cheeseman C R 2008, Production of novel ceramic materials from coal fly ash and metal finishing wastes, Resources, Conservation and Recycling 52, 1329-1335.
DOI: 10.1016/j.resconrec.2008.07.017
Google Scholar
[17]
Zhu J-bin and Yan H. 2017, Microstructure and properties of mullite-based porous ceramics produced from coal fly ash with added Al2O3, International Journal of Minerals, Metallurgy, and Materials 24, 309-315.
DOI: 10.1007/s12613-017-1409-2
Google Scholar
[18]
Yang Y, Liu F, Chang Q, Hu Z, Wang Q and Wang Y 2019, Preparation of Fly Ash-Based Porous Ceramic with Alumina as the Pore-Forming Agent, Ceramics 2, 286-295.
DOI: 10.3390/ceramics2020023
Google Scholar
[19]
Pérez-Villarejo L, Eliche-Quesada D, Iglesias-Godino F J, Martínez-García C and Corpas-Iglesias F A 2012, Recycling of ash from biomass incinerator in clay matrix to produce ceramic bricks, J. Environ. Manage., 95, 349-354.
DOI: 10.1016/j.jenvman.2010.10.022
Google Scholar
[20]
Kizinievic V 2016, Utilization of wood ash from biomass for the production of ceramic products, Constr. Build. Mater. 127, 264–273.
DOI: 10.1016/j.conbuildmat.2016.09.124
Google Scholar
[21]
Faria K C P and Holanda J N F 2013, Thermal study of clay ceramic pastes containing sugarcane bagasse ash waste, J. Therm. Anal. Calorim. 114, 27-32.
DOI: 10.1007/s10973-012-2878-1
Google Scholar
[22]
Wang S, Baxter L 2007, Comprehensive study of biomass fly ash in concrete: Strength, microscopy, kinetics and durability, Fuel Process. Technol. 88, 1165-1170.
DOI: 10.1016/j.fuproc.2007.06.016
Google Scholar
[23]
Ferraro R. M. and Nanni A. 2012, Effect of off-white rice husk ash on strength, porosity, conductivity and corrosion resistance of white concrete, Constr. Build. Mater. 31, 220-225.
DOI: 10.1016/j.conbuildmat.2011.12.010
Google Scholar
[24]
Tuan N V, Breugel G, Ye, K Fraaij A L A van, and Dai B D 2011, The study of using rice husk ash to produce ultra high performance concrete, Constr. Build. Mater. 25, 2030-2035.
DOI: 10.1016/j.conbuildmat.2010.11.046
Google Scholar
[25]
Hinojosa M J R, Galvin A P, Agrela F, Perianes M and Barbudo A, 2014, Potential use of biomass bottom ash as alternative construction material: Conflictive chemical parameters according to technical regulations, Fuel 128, 248-259.
DOI: 10.1016/j.fuel.2014.03.017
Google Scholar
[26]
Ulewicz M and Zawada A 2019, Influence of the Addition of Bottom Ash from Biomass Combustion on the Selected Properties of Clay-ash Composite, Proceeding of Academicsera 48th international conference new York, USA, 16-17th April 2019, 4-8.
DOI: 10.4028/www.scientific.net/kem.878.121
Google Scholar
[27]
Nordgren D, Hedman H, Padban N, Boström D and Öhman M 2013, Ash transformations in pulverised fuel co-combustion of straw and woody biomass, Fuel Process. Technol. 105, 52–58.
DOI: 10.1016/j.fuproc.2011.05.027
Google Scholar
[28]
Zheng Y, Jensen P A, Jensen A D, Sander B and Junker H 2007, Ash transformation during co-firing coal and straw, Fuel 86, 1008-1020.
DOI: 10.1016/j.fuel.2006.10.008
Google Scholar
[29]
Trybalski K, Kępys W, Krawczykowski D, Krawczykowska A and Szponder D 2014, Physical properties of ash from co-combustion of coal and biomass, Pol. J. Environ. Stud. 23, 1433-1436.
Google Scholar
[30]
Shao Y, Wang J, Preto F, Zhu J and Xu Ch 2012, Ash deposition in biomass combustion or co-firing for power/heat generation, Energies 5, 5171-5189.
DOI: 10.3390/en5125171
Google Scholar
[31]
Vassilev S V, Baxter D, Andersen L K and Vassileva Ch G 2010, An overview of the chemical composition of biomass, Fuel 89, 913-933.
DOI: 10.1016/j.fuel.2009.10.022
Google Scholar
[32]
Girón R P, Ruiz B, Fuente E, Gil R R and Suárez-Ruiz I 2013, Properties of fly ash from forest biomass combustion, Fuel 114, 71-77.
DOI: 10.1016/j.fuel.2012.04.042
Google Scholar
[33]
Vamvuka D, Trikouvertis M, Pentari D and Alevizos D 2014, Evaluation of ashes produced from fluidized bed combustion of residues from oranges' plantations and processing, Renewable Energy 72, 336-343.
DOI: 10.1016/j.renene.2014.07.029
Google Scholar