[1]
Carpani, B. (2017). Base Isolation from a Historical Perspective. 16Wcee, (January).
Google Scholar
[2]
Hamid, N. H., Azmi, I. F., & Shin, S. (2018). Trends of Using Base Isolation System in High Seismic Regions. International Journal of Applied Engineering Research, 13(18), 13439–13447.
Google Scholar
[3]
Naveena, K., & Nair, N. (2017). Review on Base-isolated Structures. International Research Journal of Engineering and Technology (IRJET), 4(6), 2610–2613. Retrieved from https://irjet.net/archives/V4/i6/IRJET-V4I6657.pdf.
Google Scholar
[4]
Jain, M., & Sanghai, S. S. (2017). A Review: On Base Isolation System a Review: On Base Isolation System. 3(May).
Google Scholar
[5]
Engineering, S., & Email, T. (2017). Earthquake Resistant Structure with Base Isolation System. 2(1), 99–107.
Google Scholar
[6]
Sugihardjo, H., & Lesmana, Y. (2019). The Seismic Performance of Residential Housing Under Strong. 10(01).
Google Scholar
[7]
Jangid, R.S., & Datta, T. K. (1996). Dissipation of Hysteretic Energy in Base-isolated Structure. Shock and Vibration, 3(5), 353–359.
DOI: 10.1155/1996/215819
Google Scholar
[8]
F. Naeim and J. M. Kelly, Design of seismic isolated structure, Berkeley California (1999).
Google Scholar
[9]
Devore, C. (2007). Active Base Isolation of Building Structures in Two Dimensions. 1–10.
Google Scholar
[10]
Chang, C.-M., & Spencer, Jr., B. F. (2010). An experimental study of active base isolation control for seismic protection. Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2010, 7647(March), 76473V.
DOI: 10.1117/12.847497
Google Scholar
[11]
Rodellar, J., Garcia, G., Vidal, Y., Acho, L., & Pozo, F. (2017). Hysteresis base vibration control of base-isolated structures. Procedia Engineering, 199, 1798–1803. https://doi.org/10.1016/j.proeng.2017.09.090.
DOI: 10.1016/j.proeng.2017.09.090
Google Scholar
[12]
Mazza, F., & Mazza, M. (2017). Seismic retrofitting by base-isolation of r.c. framed buildings exposed to different fire scenarios. Earthquake and Structures, 13(3), 267–277.
Google Scholar
[13]
Banović, I., Radnić, J., Grgić, N., & Matešan, D. (2018). The Use of Limestone Sand for the Seismic Base Isolation of Structures. Advances in Civil Engineering, (2018).
DOI: 10.1155/2018/9734283
Google Scholar
[14]
Morgan, T. A., Whittaker, A. S., & Andrew, T. S. (2001). Cyclic behavior of high-damping rubber bearings. Fifth World Congress on Joints, Bearings and Seismic Systems for Concrete Structures, (OCTOBER 2001).
Google Scholar
[15]
Botis, M., & Harbic, C. (2012). A brief history upon seismic isolating systems. Bulletin of the Transilvania University of Brasov, 5 (54) (1).
Google Scholar
[16]
F. Naeim and J. M. Kelly, Design of seismic isolated structure, Berkeley California (1999).
Google Scholar
[17]
Sahil Eknath, Sahil Ashok, Kunal Kashinath, Evaluation of G + 10 Structure for seismic performance under base isolation. (2019). 3140–3148.
Google Scholar
[18]
Shatnawi, A. S., Najmi, A. S., Abdel-Jaber, M. S., & Amareen, I. M. (2008). Non-linear seismic response of base-isolated frame structures using rubber bearings. Jordan Journal of Civil Engineering, 2(2), 152–171.
Google Scholar
[19]
Warn, G. P., & Ryan, K. L. (2012). A Review of Seismic Isolation for Buildings: Historical Development and Research Needs. Buildings, 2(3), 300–325.
DOI: 10.3390/buildings2030300
Google Scholar
[20]
Kelly, T. E. (2001). Design Guidelines of Base Isolation. (July).
Google Scholar
[21]
Sambhav, J. S. G. (2017). Assessment of Seismic Response Analysis of Base-isolated RC Building frame. International Journal of Science and Research (IJSR), 6(4), 1396–1402.
Google Scholar
[22]
Engineering, S. (2017). Effect of Base Isolation on Seismic Performance of Rc Irregular Buildings. 26–33.
Google Scholar
[23]
Ahmed, A., & Delhi, N. (2016). Background Study of Base-isolated Structure and Analysis of Base-isolated Frame. 95–100.
Google Scholar
[24]
Lu, L., Wang, J., & Hsu, C. (2016). Sliding Isolation Using Variable Frequency Bearings for Near - Fault Ground Motions. (164), 1–10.
Google Scholar
[25]
Fens, D. M., & Warn, G. P. (2007). Performance of Seismic Isolation Hardware under Service by. Earthquake Protection Systems. Available online: http://www.earthquakeprotection.com/ TechnicalCharacteristicsofFPSbearings.pdf.
Google Scholar
[26]
Constantinou, M. C., & Reinhorn, A. M. (1988). Teflon Bearings in Aseismic Base Isolation: Experimental Studies and Mathematical Modeling. (May 2016).
Google Scholar
[27]
Lu, L.-Y. & Yang, Y.-B. (1997), Dynamic Response of Equipment in Structures with Sliding Support, Earthquake Engineering and Structural Dynamics, 26(1);61-76.
DOI: 10.1002/(sici)1096-9845(199701)26:1<61::aid-eqe623>3.0.co;2-p
Google Scholar
[28]
Mokha, A., Constantinous, M. C., Reinhorn, A. M. and Zayas, V. A. (1991), Experimental study of friction pendulum isolation system, J. of Structural Engineering, ASCE, 117(4), 1201-1217.
DOI: 10.1061/(asce)0733-9445(1991)117:4(1201)
Google Scholar
[29]
Sunny Patel, Abbas Jamani, Evaluation of G + 10 Structure for seismic performance under base isolation. (2019). 3140–3148.
Google Scholar
[30]
Reddy, M. R., Srujana, N., & Lingeshwaran, N. (2017). Effect of base isolation in multistoried reinforced concrete building. International Journal of Civil Engineering and Technology, 8(3), 878–887.
Google Scholar
[31]
Kalantari, S. M., Naderpour, H., & Vaez, S. R. H. (2008). Investigation of Base-Isolator Type Selection on Seismic Behavior of Structures Including Story Drifts and Plastic Hinge Formation. 14th World Conference on Earthquake Engineering (14WCEE).
Google Scholar
[32]
Matsagar, V. A., & Jangid, R. S. (2004). Influence of isolator characteristics on the response of base-isolated structures. Engineering Structures, 26(12), 1735–1749. https://doi.org/10.1016/j.engstruct.2004.06.011.
DOI: 10.1016/j.engstruct.2004.06.011
Google Scholar
[33]
Falborski, T., & Jankowski, R. (2017). Experimental study on effectiveness of a prototype seismic isolation system made of polymeric bearings. Applied Sciences (Switzerland), 7(8).
DOI: 10.3390/app7080808
Google Scholar
[34]
Sajal K. Deb and Dilip K. Paul, Simplified non-linear analysis of base-isolated building (1996).
Google Scholar
[35]
Sugihardjo, H., & Lesmana, Y. (2019). The Seismic Performance Of Residential Housing Under Strong. 10(01).
Google Scholar
[36]
Dr. Thamir Al-Azawi*, D. (2017). Modeling of Base Isolator as Structural Element. Global Journal of Engineering Science and Research Management, 4(December), 92–103.
Google Scholar
[37]
Saedniya, M., & Talaeitaba, S. B. (2019). Numerical modelling of elastomeric seismic isolators for determining force–displacement curve from cyclic loading. International Journal of Advanced Structural Engineering, 11(3), 361–376. https://doi.org/10.1007/s40091-019-00238-6.
DOI: 10.1007/s40091-019-00238-6
Google Scholar
[38]
Morgan, T. A., Whittaker, A. S., & Andrew, T. S. (2001). Cyclic behavior of high-damping rubber bearings. Fifth World Congress on Joints, Bearings and Seismic Systems for Concrete Structures, (OCTOBER 2001).
Google Scholar
[39]
Bhuiyan, A. R., Okui, Y., Mitamura, H., & Imai, T. (2009). International Journal of Solids and Structures A rheology model of high damping rubber bearings for seismic analysis: Identification of nonlinear viscosity. International Journal of Solids and Structures, 46(7–8), 1778–1792.
DOI: 10.1016/j.ijsolstr.2009.01.005
Google Scholar
[40]
Amir M. A. (2020), Modeling hysteresis loop of base-isolated RC frame using Ruaumoko 2D program. Thesis, UiTM library.
Google Scholar
[41]
Valikhani, A., Jahromi, A. J., Mantawy, I. M., & Azizinamini, A. (2020). Numerical modelling of concrete-to-UHPC bond strength. Materials, 13(6). https://doi.org/10.3390/ma13061379.
DOI: 10.3390/ma13061379
Google Scholar
[42]
Zhou, T., Wu, Y. & Li, A. Numerical Study on the Ultimate Behavior of Elastomeric Bearings under Combined Compression and Shear. KSCE J Civ Eng 22, 3556–3566 (2018).
DOI: 10.1007/s12205-018-0949-y
Google Scholar
[43]
Khaloo, A. (2020). Numerical parametric investigation of hysteretic behavior of steel- reinforced elastomeric bearings under large shear deformation. Structures, 26(March), 456–470. https://doi.org/10.1016/j.istruc.2020.04.029.
DOI: 10.1016/j.istruc.2020.04.029
Google Scholar
[44]
Kumar M., & Whittaker, A.S.(2018). Cross-platform implementation, verification and validation of advanced mathematical models of elastomeric seismic isolation bearings. Engineering Structures, 175(August), 926-943. https://doi.org/10.1016/j.engstruct.2018.08.047.
DOI: 10.1016/j.engstruct.2018.08.047
Google Scholar