[1]
Cesare Signorini, Antonella Sola, Beatrice Malchiodi, Andrea Nobili, Andrea Gatto, Failure mechanism of silica coated polypropylene fibres for Fibre Reinforced Concrete (FRC), Construction and Building Materials. 236 (2020). doi.org/10.1016/j.conbuildmat.2019.117549.
DOI: 10.1016/j.conbuildmat.2019.117549
Google Scholar
[2]
Y. K. Sabapathy, S. Sabarish, C. N. A Nithish, S. M. Ramasamy, Gokul Krishna, Experimental study on strength properties of aluminium fibre reinforced concrete, Journal of King Saud University - Engineering SciencesIn press (2019). doi.org/10.1016/j.jksues.2019.12.004.
DOI: 10.1016/j.jksues.2019.12.004
Google Scholar
[3]
Muhammad Usman, Syed Hassan Farooq, Mohammad Umair, Asad Hanif (2020). Axial compressive behavior of confined steel fiber reinforced high strength concrete, Construction and Building Materials 230 (2020) doi.org/10.1016/j.conbuildmat.2019.117043.
DOI: 10.1016/j.conbuildmat.2019.117043
Google Scholar
[4]
Paula Folino, Marianela Ripani, Hernán Xargay, Nicolás Rocca (2020). Comprehensive analysis of Fiber Reinforced Concrete beams with conventional reinforcement, Engineering Structures, Vol. 202, 109862.
DOI: 10.1016/j.engstruct.2019.109862
Google Scholar
[5]
Mabrouk RTS., Mounir A. (2018) Behavior of RC beams with tension lap splices confined with transverse reinforcement using different types of concrete under pure bending, Alexandria Engineering Journal. 57 (2018), 1727-1740.
DOI: 10.1016/j.aej.2017.05.001
Google Scholar
[6]
Moissaoui B, Bouamra Y., Ait Tahar K, Amrouche MO, Ouabed D, Behavior of short concrete cylinders partially confined with GFRP Composites, Procedia Structural Inegrity. 17 (2019) 979-985.
DOI: 10.1016/j.prostr.2019.08.130
Google Scholar
[7]
Raffoul S, Garcia R, Margarit DE, Guadagnini M, Hajirasouliha I, Pilakoutas K, (2017) Behaviour of unconfined and FRP-confined rubberized concrete in axial compression, Construction and Building Materials. 147 (2017) 388-397.
DOI: 10.1016/j.conbuildmat.2017.04.175
Google Scholar
[8]
Antonius, Imran I, Setiayawan P, On the confined high-strength concrete and need of future research, Procedia Engineering 171 (2017) 121-130.
DOI: 10.1016/j.proeng.2017.01.318
Google Scholar
[9]
Mario Pietroluongo, Elisa Padovano, Alberto Frache, Claudio Badini, Mechanical recycling of an end-of-life automotive composite component, Sustainable Materials and Technologies. 23 (2020) doi.org/10.1016/j.susmat.2019.e00143.
DOI: 10.1016/j.susmat.2019.e00143
Google Scholar
[10]
Ahmed SK, (2018) Ultimate strength and axial strain of FRP strengthened circular concrete columns, Cogent Engineering. 5(1) (2018) 1-21.
DOI: 10.1080/23311916.2018.1501971
Google Scholar
[11]
Prasanti, B., & Lal, N. V., A Study on Mechanical Properties and Stress Strain Behaviour of Glass Fiber Reinforced Concrete (GFRC), International Journal of Research in Advent Technology. 5(6) (2017) 23-29.
Google Scholar
[12]
Choi E, Lee DH, Kim MC, Dense Rib Lateral Reinforcement for Confining Concrete, Procedia Engineering. 14 (2011) 233-240.
DOI: 10.1016/j.proeng.2011.07.028
Google Scholar
[13]
Ceccato C, Salviato, M, Pellegrino C, Cusatis G, Simulation of concrete failure and fiber reinforced polymer fracture in confined columns with different cross sectional shape, International Journal of Solids and Structures. 108 (2017) 216-229.
DOI: 10.1016/j.ijsolstr.2016.12.017
Google Scholar
[14]
Moran DA, Pantelides CP, Elliptical and circular FRP-confined concrete section: A Mohr-Coulomb analytical model, International of Solids and Structures. 49 (2012) 881-898.
DOI: 10.1016/j.ijsolstr.2011.12.012
Google Scholar
[15]
Sen T, Paul A, Confining concrete with sisal and jute FRP as alternatives for CFRP and GFRP, International Journal of Sustainable Built Environment. 4 (2015) 248-264.
DOI: 10.1016/j.ijsbe.2015.04.001
Google Scholar
[16]
Seffo M, Hamcho M, Strength of concrete cylinder confined by composite materials (CFRP), Energy Procedia. 19 (2012) 276-285.
DOI: 10.1016/j.egypro.2012.05.207
Google Scholar
[17]
Farghal OA, Structural performance of axially loaded FRP-confined rectangular concrete columns as affected by cross-section aspect ratio, Housing and Building National Research Center. 14 (2018) 264-271.
DOI: 10.1016/j.hbrcj.2016.11.002
Google Scholar
[18]
Singh S, Sood H, Analysis of M35 and M40 grades of concrete by ACI and USBR methods of mix design on replacing fine aggregates with tone dust, International Researdh Journal of Engineering and Technology. 2(5) (2015) 1126-1131.
Google Scholar
[19]
Baba BO, Behavior of pin-loaded Laminated Composites, Experimental Mechanics, 46 (2006) 589-600.
DOI: 10.1007/s11340-006-8735-z
Google Scholar
[20]
Ahmed, M., Dad Khan, M.K., Wamiq, M., Effect of concrete cracking on the lateral response of RCC buildings. Asian J. Civil Eng. (Build. Hous.) 9 (1) (2008) 25–34.
Google Scholar
[21]
Légeron, F. and Paultre, P. (2000). Prediction of modulus of rupture of concrete,, American Concrete Institute Materials Journal. 97(2), (2000) 193–200.
Google Scholar
[22]
Abid SR, Abdul-Hussein ML, Ayoob NS, Ali SH, Kadhum AL, Repeated drop-weight impact tests on self-compacting concrete reinforced with micro-steel fiber, Heliyon. 6 (2020) doi.org/10.1016/j.heliyon.2020.e03198.
DOI: 10.1016/j.heliyon.2020.e03198
Google Scholar