[1]
Nunes, V. M. B., et al. Molten salts as engineering fluids–a review: Part I. Molten alkali nitrates., Applied energy 183 (2016): 603-611.
DOI: 10.1016/j.apenergy.2016.09.003
Google Scholar
[2]
Uhlíř, Jan. Chemistry and technology of Molten Salt Reactors–history and perspectives., Journal of nuclear materials 360.1 (2007): 6-11.
DOI: 10.1016/j.jnucmat.2006.08.008
Google Scholar
[3]
Tian Heqing, Zhou Junjie, Guo Chaxiu. Research progress in the enhancement of specific heat capacity of molten salt heat storage materials[J/OL]. Chemical industry progress:1-22[2020-01-14].https://doi.org /10.16085/j.issn.1000-6613.2019-0798.
Google Scholar
[4]
Frangini, S., and A. Masi. Molten carbonates for advanced and sustainable energy applications: Part II. Review of recent literature., International Journal of Hydrogen Energy 41.42 (2016): 18971-18994.
DOI: 10.1016/j.ijhydene.2016.08.076
Google Scholar
[5]
Wang, Tao, Divakar Mantha, and Ramana G. Reddy. Thermal stability of the eutectic composition in LiNO3–NaNO3–KNO3 ternary system used for thermal energy storage., Solar Energy Materials and Solar Cells 100 (2012): 162-168.
DOI: 10.1016/j.solmat.2012.01.009
Google Scholar
[6]
Coscia K, Nelle S, Elliott T, et al. Thermophysical properties of LiNO3–NaNO3–KNO3 mixtures for use in concentrated solar power. Journal of Solar Energy Engineering, (2013), 135(3): 034506.
DOI: 10.1115/1.4024069
Google Scholar
[7]
Gomez J C, Calvet N, Starace A K, et al. Ca (NO3)2—NaNO3—KNO3 molten salt mixtures for direct thermal energy storage systems in parabolic trough plants. Journal of Solar Energy Engineering, (2013), 135(2): 021016.
DOI: 10.1115/1.4023182
Google Scholar
[8]
Bauer T, Laing D, Tamme R. Recent progress in alkali nitrate/nitrite developments for solar thermal power applications. Molten Salts Chemistry and Technology, (2011): 5-9.
DOI: 10.1002/9781118448847.ch7c
Google Scholar
[9]
Zhao C.Y., Wu Z.G. Thermal property characterization of a low melting-temperature temary nitrate salt mixture for thermal energy storage systems. Solar Energy Materials &Solar Cells, (2011), 95(12): 3341-3346.
DOI: 10.1016/j.solmat.2011.07.029
Google Scholar
[10]
Fernández A G, Ushak S, Galleguillos H, et al. Development of new molten salts with LiNO3 and Ca (NO3) 2 for energy storage in CSP plants. Applied Energy, (2014), 119: 131-140.
DOI: 10.1016/j.apenergy.2013.12.061
Google Scholar
[11]
Zhang P, Cheng J, Jin Y, et al. Evaluation of thermal physical properties of molten nitrate salts with low melting temperature . Solar Energy Materials and Solar Cells, (2018), 176: 36-41.
DOI: 10.1016/j.solmat.2017.11.011
Google Scholar
[12]
Ren N, Wu Y, Ma C, et al. Preparation and thermal properties of quaternary mixed nitrate with low melting point . Solar Energy Materials and Solar Cells, (2014), 127: 6-13.
DOI: 10.1016/j.solmat.2014.03.056
Google Scholar
[13]
Mantha D., Wang T., Reddy R.G. Thermodynamic modeling of eutectic point in the LiNO3-NaNO3-KNO3-NaNO2 quaternary system . Solar Energy Materials and Solar Cells.(2013), 118: 18-21.
DOI: 10.1016/j.solmat.2013.06.023
Google Scholar
[14]
Wang T, Mantha D, Reddy R.G. Thermodynamic properties of LiNO3-NaNO3-KNO3-2KNO3·Mg(NO3)2 system.Thermochim.Acta,(2013),551:92-98.
DOI: 10.1016/j.tca.2012.09.035
Google Scholar
[15]
Wang Tao, Ren Nan, Wu Yuting, et al. Development and thermophysical properties determination of a new type of low melting point mixed molten salt. Acta Energia Sinica, (2015), 36(11): 2605-2609.
Google Scholar
[16]
]Raade J W, Padowitz D. Development of molten salt heat transfer fluid with low melting point and high thermal stability. J Sol Energy Eng-Trans ASME(2011); 133:031013.
DOI: 10.1115/1.4004243
Google Scholar
[17]
Dudda, Bharath, and Donghyun Shin. Investigation of molten salt nanomaterial as thermal energy storage in concentrated solar power., ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers Digital Collection, (2012).
DOI: 10.1115/imece2012-87707
Google Scholar
[18]
Dudda, Bharath, and Donghyun Shin. Effect of nanoparticle dispersion on specific heat capacity of a binary nitrate salt eutectic for concentrated solar power applications., International journal of thermal sciences 69 (2013): 37-42.
DOI: 10.1016/j.ijthermalsci.2013.02.003
Google Scholar
[19]
Tiznobaik, Hani, and Donghyun Shin. Enhanced specific heat capacity of high-temperature molten salt-based nanofluids., International Journal of Heat and Mass Transfer 57.2 (2013): 542-548.
DOI: 10.1016/j.ijheatmasstransfer.2012.10.062
Google Scholar
[20]
DEVARADJANE R, SHIN D. Nanoparticle dispersions on ternary nitrate salts for heat transfer fluid applications in solar thermal powerlJ1. Journal of Heat Transfer.(2016), 138(5): 051901.
DOI: 10.1115/1.4030903
Google Scholar
[21]
SEO J, SHIN D. Size effect of nanoparticle on specific heat in a ternary nitrate (LiNO3-NaNO3-KNO3) salt eutectic for thermal energy storage . Applied Thermal Engineering, (2016), 102: 144-148.
DOI: 10.1016/j.applthermaleng.2016.03.134
Google Scholar
[22]
Hu, Yanwei, et al. Enhanced heat capacity of binary nitrate eutectic salt-silica nanofluid for solar energy storage., Solar Energy Materials and Solar Cells 192 (2019): 94-102.
DOI: 10.1016/j.solmat.2018.12.019
Google Scholar
[23]
Chieruzzi, Manila, et al. Effect of nanoparticles on heat capacity of nanofluids based on molten salts as PCM for thermal energy storage., Nanoscale research letters 8.1 (2013): 448.
DOI: 10.1186/1556-276x-8-448
Google Scholar
[24]
Andreu-Cabedo, Patricia, et al. Increment of specific heat capacity of solar salt with SiO2 nanoparticles., Nanoscale research letters 9.1 (2014): 582.
DOI: 10.1186/1556-276x-9-582
Google Scholar
[25]
Lu, Ming-Chang, and Chien-Hsun Huang. Specific heat capacity of molten salt-based alumina nanofluid., Nanoscale research letters 8.1 (2013): 292.
DOI: 10.1186/1556-276x-8-292
Google Scholar
[26]
Ho, Ming Xi, and Chin Pan. Optimal concentration of alumina nanoparticles in molten Hitec salt to maximize its specific heat capacity., International Journal of Heat and Mass Transfer 70 (2014): 174-184.
DOI: 10.1016/j.ijheatmasstransfer.2013.10.078
Google Scholar
[27]
Song, Weilong, et al. Effect of SiO2 nanoparticles on specific heat capacity of low-melting-point eutectic quaternary nitrate salt., Solar Energy Materials and Solar Cells 179 (2018): 66-71.
DOI: 10.1016/j.solmat.2018.01.014
Google Scholar
[28]
MATHIEU L. GRAHAM S. MUHAMMAD A. et al. In Situ Production of Copper Oxide Nanoparticles in a Binary Molten Salt for Concentrated Solar Power Plant Applications . Materials, (2017), 10(5):537-546.
DOI: 10.3390/ma10050537
Google Scholar
[29]
AWAD A, BURNS A, WALEED M, et al. Latent and sensible energy storage enhancement of nano-nitrate molten salt . Solar Energy, (2018), 172: 191-197.
DOI: 10.1016/j.solener.2018.04.012
Google Scholar
[30]
AWAD A, NAVARRO H, DING Y, et al. Thermal-physical properties of nan oparticle-seeded nitrate molten salts . Renewable Energy, 120: 275-288.
DOI: 10.1016/j.renene.2017.12.026
Google Scholar
[31]
Xie, Qiangzhi, Qunzhi Zhu, and Yan Li. Thermal storage properties of molten nitrate salt-based nanofluids with graphene nanoplatelets., Nanoscale research letters 11.1 (2016): 306.
DOI: 10.1186/s11671-016-1519-1
Google Scholar
[32]
Chieruzzi M, Miliozzi A, T Crescenzi, Torre L, Kemny JM. A New Phase Change Material Based on Potassium Nitrate with Silica ad Alumina Particles for Thermal Energy Storage. Nanoscale Research Letters, (2015), 10:273.
DOI: 10.1186/s11671-015-0984-2
Google Scholar
[33]
Gimenez P, Fereres S. Effect of heating rates and composi-tion on the thermal decomposition of nitrate based molten salts, Energy Procedia, (2015)(69): 653-662.
DOI: 10.1016/j.egypro.2015.03.075
Google Scholar
[34]
Heidi S NyGard, Espen Olsen. Effect of salt composition and temperature on the thermal behavior of beech wood in molten salt pyrolysis , Energy Procedia, (2014) (58):221-228.
DOI: 10.1016/j.egypro.2014.10.432
Google Scholar