Stretch Forming of Ti-6Al-4V Hybrid Parts at Elevated Temperatures

Article Preview

Abstract:

Hybrid components produced by two or more different process technologies grant the possibility to compensate the drawbacks of the used processes. The combination of additive manufacturing (AM) and forming offers geometrical freedom in extensions of geometrical simple parts in a cost-efficient way. Unlike the combination of bulk metal forming and AM, sheet metal forming and AM is less investigated. Especially for Ti-6Al-4V, which is widely used in AM but has a low formability at room temperature, research is still needed. In this study, the formability of hybrid parts made of Ti‑6Al‑V consisting of sheet material and additively manufactured elements (AME) is investigated for a hemispherical punch geometry. Thus, a designed tool for forming of hybrid parts at elevated temperatures is used. First investigations with a specially designed stretch forming tool demonstrate the distinct influence of the additively manufactured bodies on the stretch forming process of hybrid parts made of Ti‑6Al‑4V. Namely, the achievable drawing depth is reduced for hybrid parts as the functional elements are placed in the area of highest stresses, distorting material flow.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

135-142

Citation:

Online since:

April 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Albers, S. (Ed.), 2007. Handbuch Produktmanagement: Strategieentwicklung - Produktplanung - Organisation - Kontrolle, 3rd, ed. and ext. edition ed. Gabler, Wiesbaden, 1094 pp.

Google Scholar

[2] Zhu, Z., Dhokia, V.G., Nassehi, A., Newman, S.T., 2013. A review of hybrid manufacturing processes – state of the art and future perspectives. International Journal of Computer Integrated Manufacturing 26 (7), 596–615.

DOI: 10.1080/0951192x.2012.749530

Google Scholar

[3] Papke, T., Dubjella, P., Butzhammer, L., Huber, F., Petrunenko, O., Klose, D., Schmidt, M., Merklein, M., 2018. Influence of a bending operation on the bonding strength for hybrid parts made of Ti-6Al-4V. Procedia CIRP 74, 290–294.

DOI: 10.1016/j.procir.2018.08.113

Google Scholar

[4] Vayre, B., Vignat, F., Villeneuve, F., 2012. Designing for Additive Manufacturing. Procedia CIRP 3, 632–637.

DOI: 10.1016/j.procir.2012.07.108

Google Scholar

[5] Brackett, D., Ashcroft, I., Hague, R., 2011. Topology optmization for additive manufacturing. Proceedings of the solid freeform fabrication symposium, 348–362.

Google Scholar

[6] Schmidt, M., Spieth, H., Bauer, J., Haubach, C., 2017. Hybride Bauteilfertigung – Schmieden und Metall 3D-Druck in Kombination, in: Schmidt, M., Spieth, H., Bauer, J., Haubach, C. (Eds.), 100 Betriebe für Ressourceneffizienz – Band 1. Springer Berlin Heidelberg, Berlin, Heidelberg, p.154–157.

DOI: 10.1007/978-3-662-53367-3_30

Google Scholar

[7] Bambach, M., 2016. Recent trends in metal forming: from process simulation and microstructure control in classical forming processes to hybrid combinations between forming and additive manufacturing. Journal of Machine Engineering 16 (2), 5–17.

Google Scholar

[8] Bambach, M., Sizova, I., Emdadi, A., 2019. Development of a processing route for Ti-6Al-4V forgings based on preforms made by selective laser melting. Journal of Manufacturing Processes 37, 150–158.

DOI: 10.1016/j.jmapro.2018.11.011

Google Scholar

[9] Schaub, A., Ahuja, B., Karg, M., Schmidt, M., Merklein, M., 2014. Fabrication and Characterization of Laser Beam Melted Ti-6Al-4V Geometries on Sheet Metal, in: Demmer, A. (Ed.), Proceedings / DDMC 2014, Fraunhofer Direct Digital Manufacturing Conference, March 12 - 13, 2014, Berlin. Fraunhofer Verlag, Stuttgart.

DOI: 10.1016/j.phpro.2014.08.102

Google Scholar

[10] Leyens, C., Peters, M., 2003. Titanium and titanium alloys: Fundamentals and applications. Wiley-VCH; John Wiley (publisher), Weinheim, Chichester, xix, 513.

Google Scholar

[11] Edwards, P., Ramulu, M., 2014. Fatigue performance evaluation of selective laser melted Ti–6Al–4V. Materials Science and Engineering: A 598, 327–337.

DOI: 10.1016/j.msea.2014.01.041

Google Scholar

[12] Vrancken, B., Thijs, L., Kruth, J.-P., van Humbeeck, J., 2012. Heat treatment of Ti6Al4V produced by Selective Laser Melting: Microstructure and mechanical properties. Journal of Alloys and Compounds 541, 177–185.

DOI: 10.1016/j.jallcom.2012.07.022

Google Scholar

[13] Bambach, M.D., Bambach, M., Sviridov, A., Weiss, S., 2017. New process chains involving additive manufacturing and metal forming – a chance for saving energy? Procedia Engineering 207, 1176–1181.

DOI: 10.1016/j.proeng.2017.10.1049

Google Scholar

[14] Lütjering, G., Williams, J.C., 2007. Titanium, 2nd ed. ed. Springer, Berlin, New York, xii, 442.

Google Scholar

[15] Picu, R.C., Majorell, A. Mechanical behavior of Ti–6Al–4V at high and moderate temperatures—Part II: constitutive modeling, vol. 326, p.306–316.

DOI: 10.1016/s0921-5093(01)01508-8

Google Scholar

[16] Ahuja, B., Schaub, A., Karg, M., Schmidt, R., Merklein, M., Schmidt, M., 2015. High power laser beam melting of Ti 6 Al 4 V on formed sheet metal to achieve hybrid structures, in: Laser 3D manufacturing II. SPIE LASE, San Francisco, California, United States. Saturday 7 February 2015. SPIE, Bellingham, Washington, 93530X.

DOI: 10.1117/12.2082919

Google Scholar

[17] Butzhammer, L., Dubjella, P., Huber, F., Schaub, A., Aumüller, M., Baum, A., Petrunenko, O., Merklein, M., Schmidt, M., 2017. Experimental investigation of a process chain combining sheet metal bending and laser beam melting of Ti-6Al-4V, in: Wissenschaftliche Gesellschaft Lasertechnik e.V. (Ed.), Proceedings of the Lasers in Manufacturing LIM, München.

DOI: 10.1016/j.procir.2018.08.113

Google Scholar

[18] Merklein, M., Dubjella, P., Schaub, A., Butzhammer, L., Schmidt, M., 2016. Interaction of Additive Manufacturing and Forming, in: Drstvenšek, I., Drummer, D., Schmidt, M. (Eds.), 6th International Conference on Additive Technologies - iCAT 2016. Proceedings: Nürnberg, Germany, 29.-30. November 2016 : DAAAM Specialized Conference. Interesansa - zavod, Ljubljana, p.309–316.

DOI: 10.1016/j.phpro.2016.08.082

Google Scholar

[19] Papke, T., Huber, F., Geyer, G., Schmidt, M., Merklein, M., 2019. Characterisation of the Tensile Bonding Strength of Ti-6Al-4V Hybrid Parts Made by Sheet Metal Forming and Laser Beam Melting, in: Schmitt, R., Schuh, G. (Eds.), Advances in Production Research. Proceedings of the 8th Congress of the German Academic Association for Production Technology (WGP), Aachen, November 19-20, 2018. Springer International Publishing, Cham, p.361–370.

DOI: 10.1007/978-3-030-03451-1_36

Google Scholar