[1]
Albers, S. (Ed.), 2007. Handbuch Produktmanagement: Strategieentwicklung - Produktplanung - Organisation - Kontrolle, 3rd, ed. and ext. edition ed. Gabler, Wiesbaden, 1094 pp.
Google Scholar
[2]
Zhu, Z., Dhokia, V.G., Nassehi, A., Newman, S.T., 2013. A review of hybrid manufacturing processes – state of the art and future perspectives. International Journal of Computer Integrated Manufacturing 26 (7), 596–615.
DOI: 10.1080/0951192x.2012.749530
Google Scholar
[3]
Papke, T., Dubjella, P., Butzhammer, L., Huber, F., Petrunenko, O., Klose, D., Schmidt, M., Merklein, M., 2018. Influence of a bending operation on the bonding strength for hybrid parts made of Ti-6Al-4V. Procedia CIRP 74, 290–294.
DOI: 10.1016/j.procir.2018.08.113
Google Scholar
[4]
Vayre, B., Vignat, F., Villeneuve, F., 2012. Designing for Additive Manufacturing. Procedia CIRP 3, 632–637.
DOI: 10.1016/j.procir.2012.07.108
Google Scholar
[5]
Brackett, D., Ashcroft, I., Hague, R., 2011. Topology optmization for additive manufacturing. Proceedings of the solid freeform fabrication symposium, 348–362.
Google Scholar
[6]
Schmidt, M., Spieth, H., Bauer, J., Haubach, C., 2017. Hybride Bauteilfertigung – Schmieden und Metall 3D-Druck in Kombination, in: Schmidt, M., Spieth, H., Bauer, J., Haubach, C. (Eds.), 100 Betriebe für Ressourceneffizienz – Band 1. Springer Berlin Heidelberg, Berlin, Heidelberg, p.154–157.
DOI: 10.1007/978-3-662-53367-3_30
Google Scholar
[7]
Bambach, M., 2016. Recent trends in metal forming: from process simulation and microstructure control in classical forming processes to hybrid combinations between forming and additive manufacturing. Journal of Machine Engineering 16 (2), 5–17.
Google Scholar
[8]
Bambach, M., Sizova, I., Emdadi, A., 2019. Development of a processing route for Ti-6Al-4V forgings based on preforms made by selective laser melting. Journal of Manufacturing Processes 37, 150–158.
DOI: 10.1016/j.jmapro.2018.11.011
Google Scholar
[9]
Schaub, A., Ahuja, B., Karg, M., Schmidt, M., Merklein, M., 2014. Fabrication and Characterization of Laser Beam Melted Ti-6Al-4V Geometries on Sheet Metal, in: Demmer, A. (Ed.), Proceedings / DDMC 2014, Fraunhofer Direct Digital Manufacturing Conference, March 12 - 13, 2014, Berlin. Fraunhofer Verlag, Stuttgart.
DOI: 10.1016/j.phpro.2014.08.102
Google Scholar
[10]
Leyens, C., Peters, M., 2003. Titanium and titanium alloys: Fundamentals and applications. Wiley-VCH; John Wiley (publisher), Weinheim, Chichester, xix, 513.
Google Scholar
[11]
Edwards, P., Ramulu, M., 2014. Fatigue performance evaluation of selective laser melted Ti–6Al–4V. Materials Science and Engineering: A 598, 327–337.
DOI: 10.1016/j.msea.2014.01.041
Google Scholar
[12]
Vrancken, B., Thijs, L., Kruth, J.-P., van Humbeeck, J., 2012. Heat treatment of Ti6Al4V produced by Selective Laser Melting: Microstructure and mechanical properties. Journal of Alloys and Compounds 541, 177–185.
DOI: 10.1016/j.jallcom.2012.07.022
Google Scholar
[13]
Bambach, M.D., Bambach, M., Sviridov, A., Weiss, S., 2017. New process chains involving additive manufacturing and metal forming – a chance for saving energy? Procedia Engineering 207, 1176–1181.
DOI: 10.1016/j.proeng.2017.10.1049
Google Scholar
[14]
Lütjering, G., Williams, J.C., 2007. Titanium, 2nd ed. ed. Springer, Berlin, New York, xii, 442.
Google Scholar
[15]
Picu, R.C., Majorell, A. Mechanical behavior of Ti–6Al–4V at high and moderate temperatures—Part II: constitutive modeling, vol. 326, p.306–316.
DOI: 10.1016/s0921-5093(01)01508-8
Google Scholar
[16]
Ahuja, B., Schaub, A., Karg, M., Schmidt, R., Merklein, M., Schmidt, M., 2015. High power laser beam melting of Ti 6 Al 4 V on formed sheet metal to achieve hybrid structures, in: Laser 3D manufacturing II. SPIE LASE, San Francisco, California, United States. Saturday 7 February 2015. SPIE, Bellingham, Washington, 93530X.
DOI: 10.1117/12.2082919
Google Scholar
[17]
Butzhammer, L., Dubjella, P., Huber, F., Schaub, A., Aumüller, M., Baum, A., Petrunenko, O., Merklein, M., Schmidt, M., 2017. Experimental investigation of a process chain combining sheet metal bending and laser beam melting of Ti-6Al-4V, in: Wissenschaftliche Gesellschaft Lasertechnik e.V. (Ed.), Proceedings of the Lasers in Manufacturing LIM, München.
DOI: 10.1016/j.procir.2018.08.113
Google Scholar
[18]
Merklein, M., Dubjella, P., Schaub, A., Butzhammer, L., Schmidt, M., 2016. Interaction of Additive Manufacturing and Forming, in: Drstvenšek, I., Drummer, D., Schmidt, M. (Eds.), 6th International Conference on Additive Technologies - iCAT 2016. Proceedings: Nürnberg, Germany, 29.-30. November 2016 : DAAAM Specialized Conference. Interesansa - zavod, Ljubljana, p.309–316.
DOI: 10.1016/j.phpro.2016.08.082
Google Scholar
[19]
Papke, T., Huber, F., Geyer, G., Schmidt, M., Merklein, M., 2019. Characterisation of the Tensile Bonding Strength of Ti-6Al-4V Hybrid Parts Made by Sheet Metal Forming and Laser Beam Melting, in: Schmitt, R., Schuh, G. (Eds.), Advances in Production Research. Proceedings of the 8th Congress of the German Academic Association for Production Technology (WGP), Aachen, November 19-20, 2018. Springer International Publishing, Cham, p.361–370.
DOI: 10.1007/978-3-030-03451-1_36
Google Scholar