Approach for the Automated Analysis of Geometrical Clinch Joint Characteristics

Article Preview

Abstract:

Due to their cost-efficiency and environmental friendliness, the demand of mechanical joining processes is constantly rising. However, the dimensioning and design of joints and suitable processes are mainly based on expert knowledge and few experimental data. Therefore, the performance of numerical and experimental studies enables the generation of optimized joining geometries. However, the manual evaluation of the results of such studies is often highly time-consuming. As a novel solution, image segmentation and machine learning algorithm provide methods to automate the analysis process. Motivated by this, the paper presents an approach for the automated analysis of geometrical characteristics using clinching as an example.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

105-110

Citation:

Online since:

April 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Neugebauer, et al., Entwicklung eines Konstruktionssystems für den rechnerischen Festigkeitsnachweis von punktförmig mechanisch gefügten Bauteilen, EFB-Forschungsbericht, Hannover, (2010).

Google Scholar

[2] W. Drossel, et al., Sensitivitätsanalyse und Robustheitsbewertung beim mechanischen Fügen, EFB-Forschungsbericht 376, Hannover, (2013).

Google Scholar

[3] C. Zirngibl, et al., Potentiale datengestützter Methoden zur Gestaltung und Optimierung mechanischer Fügeverbindungen, Proceedings of the 31. Symposium Design for X, Bamberg, (2020).

DOI: 10.35199/dfx2020.8

Google Scholar

[4] M. Wang, et al., Shape optimization methodology of clinching tools based on Bezier curve, International Journal of Advanced Manufacturing Technology 94, (2018).

DOI: 10.1007/s00170-017-0987-5

Google Scholar

[5] C. Bye, et al., Mechanisches Fügen von Dünnblech: Clinchen, Nieten, Funktionselemente, In: Handbuch Fügen, Handhaben und Montieren, Carl Hanser Verlag, München, (2014).

DOI: 10.3139/9783446436565.fm

Google Scholar

[6] H. J. Fahrenwaldt, et al., Fügen durch Umformung. In: Praxiswissen Schweißtechnik, 5. Ed., Springer Vieweg, Wiesbaden, (2014).

DOI: 10.1007/978-3-8348-9192-1_6

Google Scholar

[7] DVS, Taschenbuch DVS-Merkblätter und –Richtlinien – Mechanisches Fügen, Fachbuchreihe Schweißtechnik, DVS-Media GmbH, Düsseldorf, (2009).

DOI: 10.1002/maco.19890401118

Google Scholar

[8] J. E. Solem, Programming Computer Vision with Python, O'Reilly Media, Sebastopol, (2012).

Google Scholar

[9] A. Géron, Hands-On Machine Learning with Scikit-Learn, Keras & TensorFlow, 2. Ed, O'Reilly Media, Sebastopol, (2019).

Google Scholar

[10] ECKOLD GmbH & Co. KG, Retrieved from URL: https://www.simufact.de/mechanisches-fuegen.html on 03.10.(2020).

Google Scholar