Numerical and Experimental Fracture Mechanical Investigations of Clinchable Sheet Metals Made of HCT590X

Article Preview

Abstract:

In many areas of product manufacturing constructions consist of individual components and metal sheets that are joined together to form complex structures. A simple and industrial common method for joining dissimilar and coated materials is clinching. During the joining process and due to the service load cracks can occur in the area of the joint, propagate due to cyclic loading and consequently lead to structural failure. For the prevention of these damage cases, first of all knowledge about the fracture mechanical material parameters regarding the original material state of the sheet metals used within the clinching process are essential.Within the scope of this paper experimental and numerical preliminary investigations regarding the fracture mechanical behavior of sheet metals used within the clinching process are presented. Due to the low thickness of 1.5 mm of the material sheets, the development of a new specimen is necessary to determine the crack growth rate curve including the fracture mechanical parameters like the threshold against crack growth ΔKI,th and the fracture toughness KIC of the base material HCT590X. For the experimental determination of the crack growth rate curve the numerical calculation of the geometry factor function as well as the calibration function of this special specimen are essential. After the experimental validation of the numerically determined calibration function, crack growth rate curves are determined for the stress ratios R = 0.1 and R = 0.3 to examine the mean stress sensitivity. In addition, the different rolling directions of 0° and 90° in relation to the initial crack are taken into account in order to investigate the influence of the anisotropy due to rolling.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

127-132

Citation:

Online since:

April 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. Geoffrey, Materials for Automobile Bodies, second ed., Butterworth-Heinemann Ltd, Oxford, (2012).

Google Scholar

[2] H. P. Liebig, Durchsetzfügen setzt sich durch, in: Stahl Heft 3, 1992, p.100 – 104.

Google Scholar

[3] H. E. Friedrich (Ed.), Leichtbau in der Fahrzeugtechnik, second ed., Springer-Vieweg, Wiesbaden, (2017).

Google Scholar

[4] T. A. Barnes, I. R. Pashby, Joining techniques for aluminium spaceframes used in automobiles: Part II - adhesive bonding and mechanical fasteners, Journal of Material Processing Technology 99, (2000) 62-71.

DOI: 10.1016/s0924-0136(99)00367-2

Google Scholar

[5] M. M. Eshtayeh, M. Hrairi, A. K. M. Mohiuddin, Clinching process for joining dissimilar materials: state of the art, International Journal of Advanced Manufacturing Technology 82 (2015) 179-195.

DOI: 10.1007/s00170-015-7363-0

Google Scholar

[6] J. Dietrich, Praxis der Umformtechnik. Umform- und Zerteilverfahren, Werkzeuge, Maschinen, Springer Vieweg, Wiesbaden, (2018).

Google Scholar

[7] H. A. Richard, M. Sander, Ermüdungsrisse, Springer Vieweg Verlag, Wiesbaden, (2012).

Google Scholar

[8] Böllhoff, Rivclinch: Devices and systems for joining sheets and profiles without fasteners. Information on https://pdf.directindustry.com/pdf/boellhoff/rivclinch-devices-systems-joining-sheets-profiles-without-fasteners/9129-29986.html.

Google Scholar

[9] J.-B. Kim, H.-K. Kim, Fatigue behaviour of clinched joints in a steel sheet, Fatigue and Fracture of Engineering Materials and Structures 38 (2014) 661-672.

DOI: 10.1111/ffe.12263

Google Scholar

[10] F. Lambiase, A. Di Ilio, Damage analysis in mechanical clinching: Experimental and numerical study, Journal of Materials Processing Technology 230 (2016) 109-120.

DOI: 10.1016/j.jmatprotec.2015.11.013

Google Scholar

[11] S. Coppieters, H. Zhang, F. Xu, N. Vandermeiren, A. Breda, D. Debruyne, Process-induced bottom defects in clinch forming: Simulation and effect on the structural integrity of single shear lap specimens, Materials and Design 130 (2017) 336-348.

DOI: 10.1016/j.matdes.2017.05.077

Google Scholar

[12] ASTM, Annual book of ASTM standards. Section 3: Metals test methods and analytical procedures, vol 03.01. Metals - Mechanical testing, elevated and low-temperature tests, Metallography, 2008: E 647-08.

Google Scholar

[13] B. Wiedemeier, Einsatzmöglichkeiten bruchmechanischer Konzepte bei der Entwicklung und Verbesserung von Rohrprodukten aus hochfesten Werkstoffen, in: Fortschritt-Bericht VDI, Reihe 18: Mechanik/Bruchmechanik Nr. 332, VDI-Verlag, Düsseldorf, (2011).

Google Scholar

[14] V. Kloster, M. Fulland, H. A. Richard, B. Wiedemeier, J. Niendorf, Risswachstum in Strukturen mit gradierten Materialeigenschaften, DVM-Bericht 242, Arbeitskreis: Bruchmechanische Werkstoff–und Bauteilbewertung: Beanspruchungsanalyse, Prüfmethoden und Anwendungen, Deutscher Verband für Materialforschung und -prüfung e.V., Berlin (2010) 113-122.

DOI: 10.1002/maco.19970481213

Google Scholar

[15] B. Schramm, Risswachstum in funktional gradierten Materialien und Strukturen, in: Fortschritt-Bericht VDI, Reihe 18: Mechanik/Bruchmechanik Nr. 339, VDI-Verlag, Düsseldorf, (2014).

DOI: 10.51202/9783186350183-31

Google Scholar

[16] D. Weiß, B. Schramm, G. Kullmer, Development of a special specimen geometry for the experimental determination of fracture mechanical parameters of clinchable metal sheets, Procedia Structural Integrity 28 (2020) 2335-2341.

DOI: 10.1016/j.prostr.2020.11.081

Google Scholar

[17] M. Sander, H. A. Richard, Automatisierte Ermüdungsrissausbreitungsversuche, Materials Testing 46 (2004) 22-26.

Google Scholar