A First Approach for the Treatment of Galvanic Corrosion and of Load-Bearing Capacity of Clinched Joints

Article Preview

Abstract:

Corrosion is a major cause for the failure of metallic components in various branches of the industry. Depending on the corrosion severity, the time until failure of the component varies. On the contrary, a study has shown that certain riveted metal joints, exposed to a short period of mechanical loading and corrosion, have greater fatigue limits. This study gives rise to the question how different corrosion exposure times affect joint metallic components. In the present research, a theoretical approach is developed in order to evaluate the influence of galvanic corrosion on joint integrity of clinched metal joints. At first, the framework for modeling galvanic corrosion is introduced. Furthermore, a simulative investigation of a clinching point is carried out based on the assumption that corrosion leads to a reduction of the contact area which leads to a local increase in contact pressure. For this purpose, the stiffness values of individual elements in a finite element model are reduced locally in the contact area of the undercut and the contact stress along a path is evaluated. Summarizing, a modeling approach is introduced to investigate corrosion effects on load-bearing behavior of clinched joints.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

97-104

Citation:

Online since:

April 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Meschut, V. Janzen, T. Olfermann, Innovative and Highly Productive Joining Technologies for Multi-Material Lightweight Car Body Structures, J. Mater. Eng. Perform. 23 (2014) 1515-1523.

DOI: 10.1007/s11665-014-0962-3

Google Scholar

[2] X. He, Clinching for sheet materials, Sci. Technol. Adv. Mater. 18 (2017) 381-405.

Google Scholar

[3] L. Calabrese, E. Proverbio, G. Galtieri, C. Borsellino, Effect of corrosion degradation on failure mechanisms of aluminium/steel clinched joints, Mater. Des. 87 (2015) 473-481.

DOI: 10.1016/j.matdes.2015.08.053

Google Scholar

[4] R. Neugebauer, R. Mauermann, R. Grützner, Einfluss von kombinierter mechanisch-medialer Beanspruchung auf die Schwingfestigkeit von stanz- und blindgenieteten Mischverbindungen. EFB-Verlag, Hannover, (2012).

Google Scholar

[5] M. Wang, G. Xiao, Z. Li, J. Wang, Shape optimization methodology of clinching tools based on Bezier curve, Int. J. Adv. Manuf. Technol. 94 (2018) 2267-2280.

DOI: 10.1007/s00170-017-0987-5

Google Scholar

[6] A.-B. Ryberg, L. Nilsson, Spot weld reduction methods for automotive structures. Struct Multidisc Optim 53 (2016) 923-934.

DOI: 10.1007/s00158-015-1355-4

Google Scholar

[7] D.W. Kelly, M. Elsley, A procedure for determining load paths in elastic continua, Eng. Comput. 12 (1995) 415-424.

DOI: 10.1108/02644409510799721

Google Scholar

[8] K. Marhadi, S. Venkataraman, Comparison of Quantitative and Qualitative Information Provided by Different Structural Load Path Definitions, Int. J. Simul. Multidiscip. Des. Optim. 3 (2009) 384-400.

DOI: 10.1051/ijsmdo/2009014

Google Scholar

[9] C. Steinfelder, A. Brosius, A New Approach for the Evaluation of Component and Joint Loads Based on Load Path Analysis, in: BA. Behrens, A. Brosius, W. Hintze, S. Ihlenfeldt, J.P. Wulfsberg (Eds), Production at the leading edge of technology. WGP 2020. Lecture Notes in Production Engineering. Springer, Berlin, Heidelberg, 2021, p.134–141.

DOI: 10.1007/978-3-662-62138-7_14

Google Scholar

[10] A. Lasia, General Model of Electrochemical Hydrogen Absorption into Metals, J. Electrochem. Soc. 142 (1995) 3393-3399.

DOI: 10.1149/1.2050267

Google Scholar

[11] M. Mohamed-Said, B. Vuillemin, R. Oltra, A. Marion, L. Trenty, D. Crusset, Predictive modelling of the corrosion rate of carbon steel focusing on the effect of the precipitation of corrosion products," Corros. Eng. Sci. Technol. 52 (2017) 178-185.

DOI: 10.1080/1478422x.2017.1305651

Google Scholar

[12] S. Sarkar, J. E. Warner, W. Aquino, A numerical framework for the modeling of corrosive dissolution, Corros. Sci. 65 (2012) 502-511.

DOI: 10.1016/j.corsci.2012.08.059

Google Scholar

[13] M. Rossi, T. Wallmersperger, S. Neukamm, K. Padberg-Gehle, Modeling and Simulation of Electrochemical Cells under Applied Voltage, Electrochimica Acta 258 (2017) 241-254.

DOI: 10.1016/j.electacta.2017.10.047

Google Scholar

[14] M. Rossi, T. Wallmersperger, Thermodynamically consistent three-dimensional electrochemical model for polymeric membranes, Electrochimica Acta, 283 (2018) 1323-1338.

DOI: 10.1016/j.electacta.2018.06.174

Google Scholar

[15] Livermore LSTC: LS-DYNA R11 Keyword user's manual - Volume I. (r:10580) (2018).

Google Scholar

[16] Livermore LSTC: LS-DYNA R11 Keyword user's manual - Volume II. (r:10850) (2019).

Google Scholar

[17] K. B. Deshpande, Validated numerical modelling of galvanic corrosion for couples: Magnesium alloy (AE44)-mild steel and AE44-aluminium alloy (AA6063) in brine solution, Corros. Sci. 52 (2010) 3514-3522.

DOI: 10.1016/j.corsci.2010.06.031

Google Scholar

[18] P. Doig, P. E. J. Flewitt, A Finite Difference Numerical Analysis of Galvanic Corrosion for Semi‐Infinite Linear Coplanar Electrodes, J. Electrochem. Soc. 126 (1979) 2057-2063.

DOI: 10.1149/1.2128861

Google Scholar