Load Path Transmission in Joining Elements

Article Preview

Abstract:

The mechanical properties of joined structures are determined considerably by the chosen joining technology. With the aim of providing a method that enables a faster and more profound decision-making in the spatial distribution of joining points during product development, a new method for the load path analysis of joining points is presented. For an exemplary car body, the load type in the joining elements, i.e. pure tensile, shear and combined tensile-shear loads, is determined using finite element analysis (FEA). Based on the evaluated loads, the resulting load paths in selected joining points are analyzed using a 2D FE-model of a clinching point. State of the art methods for load path analysis are dependent on the selected coordinate system or the existing stress state. Thus, a general statement about the load transmission path is not possible at this time. Here, a novel method for the analysis of load paths is used, which is independent of the alignment of the analyzed geometry. The basic assumption of the new load path analysis method was confirmed by using a simple specimen with a square hole in different orientations. The results presented here show a possibility to display the load transmission path invariantly. In further steps, the method will be extended for 3D analysis and the investigation of more complex assemblies. The primary goal of this methodical approach is an even load distribution over the joining elements and the component. This will provide a basis for future design approaches aimed at reducing the number of joining elements in joined structures.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

73-80

Citation:

Online since:

April 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Martinsen, S.J. Hu, B.E. Carlson, Joining of dissimilar materials, CIRP Ann. Manuf. Technol. 64 (2015) 679-699.

DOI: 10.1016/j.cirp.2015.05.006

Google Scholar

[2] D.H.D. Eggink and M.W. Groll, Joining element design and product variety in manufacturing industries, Procedia CIRP 88 (2020) 76-81.

DOI: 10.1016/j.procir.2020.05.014

Google Scholar

[3] H. ElMaraghy, G. Schuh, W. ElMaraghy, F. Piller, P. Schönsleben, M. Tseng, A. Bernard, Product variety management, CIRP Ann. Manuf. Technol. 64 (2013) 629-652.

DOI: 10.1016/j.cirp.2013.05.007

Google Scholar

[4] M. Ouisse, S. Cogan, Robust design of spot welds in automotive structures: A decision-making methodology, Mech. Sys. Signal Pr. 24 (2010) 1172-1190.

DOI: 10.1016/j.ymssp.2009.09.012

Google Scholar

[5] S. Donders, M. Brughmans, L. Hermans, N. Tzannetakis, The Effect of Spot Weld Failure on Dynamic Vehicle Performance, Sound Vib. 39 (2005)16-24.

Google Scholar

[6] D.H. Dominick Eggink, M.W. Groll, D.F. Perez-Ramirez, J. Biedert, C. Knödler, P. Papentin, Towards automated joining element design, Procedia Comput. Sci.159 (2019) 87-96.

DOI: 10.1016/j.procs.2019.09.163

Google Scholar

[7] A.B. Ryberg, L. Nilsson, Spot weld reduction methods for automotive structures, Struct. Multidisc. Optim. vol. 53 (2016) 923-934.

DOI: 10.1007/s00158-015-1355-4

Google Scholar

[8] C. Woischwill, I.Y. Kim, Multimaterial multijoint topology optimization, Int. J. Numer. Methods Eng. 115 (2018) 1552-1579.

DOI: 10.1002/nme.5908

Google Scholar

[9] V. Florea, M. Pamwar, B. Sangha, I.Y. Kim, 3D multi-material and multi-joint topology optimization with tooling accessibility constraints, Struct. Multidisc. Optim. 60 (2019) 2531-2558.

DOI: 10.1007/s00158-019-02344-1

Google Scholar

[10] D.W. Kelly, C.A. Reidsema, M.C.W. Lee, An algorithm for defining load paths and a load bearing topology in finite element analysis, Eng. Comput. 28 (2011) 196-214.

DOI: 10.1108/02644401111109231

Google Scholar

[11] A. Breda, S. Coppieters, D. Debruyne, Equivalent modelling strategy for a clinched joint using a simple calibration method, Thin-Walled Struc. 113 (2017) 1-12.

DOI: 10.1016/j.tws.2016.12.002

Google Scholar

[12] A.G. Hanssen, L. Olovsson, R. Porcaro, M. Langseth, A large-scale finite element point-connector model for self-piercing rivet connections, Eur. J. Mech. A. Solids 29 (2010) 484-495.

DOI: 10.1016/j.euromechsol.2010.02.010

Google Scholar

[13] S. Weyer, H. Hooputra, F. Zhou, Modeling of Self-Piercing Rivets Using Fasteners in Crash Analysis, ABAQUS USERS' Conference (2016) 511-526.

Google Scholar

[14] S. Sommer, J. Maier, Failure Modeling of a Self Piercing Riveted Joint Using LS-DYNA, 8th European LS-DYNA Conference (2011).

Google Scholar

[15] B. Langrand, L. Patronelli, E. Deletombe, E. Markiewicz, P. Drazétic, An alternative numerical approach for full scale characterisation for riveted joint design, Aerosp. Sc. Technol. 6 (2002) 343-354.

DOI: 10.1016/s1270-9638(02)01174-4

Google Scholar

[16] O. Hahn D. Gieske, Neue Einelementprobe zum Pruefen von Punktschweissverbindungen unter kombinierten Belastungen, Schweissen & Schneiden 46 (1994) 9-12.

Google Scholar

[17] S. Martin, A. A. Camberg, T. Tröster, Probability Distribution of Joint Point Loadings in Car Body Structures under Global Bending and Torsion, Procedia Manuf. 47 (2020) 419-424.

DOI: 10.1016/j.promfg.2020.04.324

Google Scholar

[18] D.W. Kelly, M. Elsley, A procedure for determining load paths in elastic continua, Eng. Comput. 12 (1995) 415-424.

DOI: 10.1108/02644409510799721

Google Scholar

[19] K. Marhadi, S. Venkataraman, Comparison of Quantitative and Qualitative Information Provided by Different Structural Load Path Definitions, Int. J. Simul. Multidiscip. Des. Optim. 3 (2009) 384-400.

DOI: 10.1051/ijsmdo/2009014

Google Scholar

[20] R. Li, D. Kelly, A. Crosky, H. Schoen, L. Smollich, Improving the Efficiency of Fiber Steered Composite Joints using Load Path Trajectories, J. Compos. Mater 40 (2005) 1645-1658.

DOI: 10.1177/0021998306060168

Google Scholar

[21] W. Waldman, M. Heller, R. Kaye, F. Rose, Advances in two‐dimensional structural loadflow visualisation, Eng. Comput. 19 (2002) 305-326.

DOI: 10.1108/02644400210697456

Google Scholar

[22] C. Steinfelder, A. Brosius, A New Approach for the Evaluation of Component and Joint Loads Based on Load Path Analysis, in: BA. Behrens, A. Brosius, W. Hintze, S. Ihlenfeldt, J.P. Wulfsberg (Eds), Production at the leading edge of technology. WGP 2020. Lecture Notes in Production Engineering. Springer, Berlin, Heidelberg, 2021, pp.134-141.

DOI: 10.1007/978-3-662-62138-7_14

Google Scholar

[23] A. Breda, S. Coppieters, T. Kuwabara, D. Debruyne, The effect of plastic anisotropy on the calibration of an equivalent model for clinched connections, Thin Wall. Struct 145 (2019) 1-11.

DOI: 10.1016/j.tws.2019.106360

Google Scholar

[24] Livermore LSTC: LS-DYNA R11 Keyword user's manual - Volume I. (r:10580) (2018).

Google Scholar

[25] Livermore LSTC: LS-DYNA R11 Keyword user's manual - Volume II. (r:10850) (2019).

Google Scholar

[26] J.D. Hunter, Matplotlib: A 2D graphics environment, Comput. Sci. Eng. 9 (2007) 90-95.

Google Scholar

[27] W. Schroeder, K. Martin, B. Lorensen, The Visualization Toolkit, 4th ed. Kitware, (2006).

Google Scholar