Temperature Dependent Modelling of Fibre-Reinforced Thermoplastic Organo-Sheet Material for Forming and Joining Process Simulations

Article Preview

Abstract:

Joining and local forming processes for fibre-reinforced thermoplastics (FRTP) like hole-forming or variations of the clinching process require an in-depth understanding of the process induced effects on meso-scale. For numerical modelling with a geometrical description of a woven fabric, adequate material models for a representative unit cell are identified. Model calibration is achieved employing a mesoscopic finite-element-approach using the embedded element method based on tensile tests of the consolidated organo-sheets and a phenomenological evaluation of photomicrographs. The model takes temperature dependent stiffness and fibre tension failure into account.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

49-56

Citation:

Online since:

April 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Gude, M., Freund, A.; Vogel, C. & Kupfer, R.: Simulation of a Novel Joining Process for Fiber-Reinforced Thermoplastic Composites and Metallic Components, Mechanics of Composite Materials, 2017, 52, pp.733-740.

DOI: 10.1007/s11029-017-9623-6

Google Scholar

[2] Gude, M., Vogel, C. & Gröger, B.: Simulation-aided development of a robust thermoclinching joining process for hybrid structures with textile reinforced thermoplastic composites and metallic components, Materialwissenschaft und Werkstofftechnik, 2019, 50, pp.1027-1038.

DOI: 10.1002/mawe.201900036

Google Scholar

[3] Hufenbach, W.; Frank, A.; Helms, O. & Kupfer, R.: Gestaltung von textilverbundgerechten Fügezonen mit warmgeformten Bolzenlöchern, J Plast Technol, 2010, 6, pp.255-269.

Google Scholar

[4] Dean, A. & Rolfes, R.: FE modeling and simulation framework for the forming of hybrid metal-composites clinching joints, Thin-Walled Structures, 2018, 133, pp.134-140.

DOI: 10.1016/j.tws.2018.09.034

Google Scholar

[5] Hirsch, F.; Müller, S.; Machens, M.; Staschko, R.; Fuchs, N.; Kästner, M.: Simulation of self-piercing rivetting processes in fibre reinforced polymers: Material modelling and parameter identification, Journal of Materials Processing Technology, 2017, 241, pp.164-177.

DOI: 10.1016/j.jmatprotec.2016.10.010

Google Scholar

[6] Vorderbrüggen, J.; Gröger, B.; Kupfer, R.; Hoog, A.; Gude, M. & Meschut, G.: Phenomena of forming and failure in joining hybrid structures–Experimental and numerical studies of clinching thermoplastic composites and metal, AIP Conference Proceedings, 2019, 2113, 050016.

DOI: 10.1063/1.5112580

Google Scholar

[7] Schürmann, H.: Konstruieren mit Faser-Kunststoff-Verbunden, Springer-Verlag, (2007).

DOI: 10.1007/978-3-540-72190-1

Google Scholar

[8] Tabatabaei, S.; Lomov, S. & Verpoest, I.: Assessment of embedded element technique in meso-FE modelling of fibre reinforced composites, Composite Structures, 2014, 107, pp.436-446.

DOI: 10.1016/j.compstruct.2013.08.020

Google Scholar

[9] Dassault Systèmes: Abaqus 2016 Online Documentation, (2015).

Google Scholar

[10] Tabatabaei, S. & Lomov, S. V.: Eliminating the volume redundancy of embedded elements and yarn interpenetrations in meso-finite element modelling of textile composites, Computers & Structures, 2015, 152, p.142 – 154.

DOI: 10.1016/j.compstruc.2015.02.014

Google Scholar