Influence of Roughness and Curing Temperature on the Strength of Aluminum Adhesively Bonded Joints

Article Preview

Abstract:

This work presents a comprehensive experimental study on the effect of surface roughness and adhesive curing temperature on adhesively bonded joints of AA6082. The modification of surface morphology has been assessed by roughness measurements (contact and non-contact profilometry). In addition, mechanical changes in the resin properties due to different curing time have been probed through a series of instrumented indentation tests. Thus, adhesive bonded single lap joints were fabricated and tested to assess the changes in shear strength at varying surface roughness and curing conditions. The obtained results indicate the ability of the roughened surface to improve the joint strength together with the adequate combination of curing temperature and time among those suggested by the manufacturer.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

227-233

Citation:

Online since:

April 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W.W. Adams RD, Comyn J, Structural adhesive joints in engineering, 1986. https://doi.org/10.1139/l86-091.

Google Scholar

[2] K. AJ, Adhesion and adhesives, science and technology, 1987. https://doi.org/10.1007/978-94-015-7764-9.

Google Scholar

[3] L.F.M. da Silva, D.A. Dillard, B. Blackman, R.D. Adams, Testing Adhesive Joints, Best Practices, 2012. https://doi.org/10.1002/9783527647026.

DOI: 10.1002/9783527647026

Google Scholar

[4] G. Rotella, M. Alfano, T. Schiefer, I. Jansen, Enhancement of static strength and long term durability of steel/epoxy joints through a fiber laser surface pre-treatment, Int. J. Adhes. Adhes. 63 (2015) 87–95. https://doi.org/10.1016/j.ijadhadh.2015.08.009.

DOI: 10.1016/j.ijadhadh.2015.08.009

Google Scholar

[5] G. Rotella, M. Alfano, S. Candamano, Surface modification of Ti6Al4V alloy by pulsed Yb-laser irradiation for enhanced adhesive bonding, CIRP Ann. - Manuf. Technol. 64 (2015) 527–530. https://doi.org/10.1016/j.cirp.2015.04.042.

DOI: 10.1016/j.cirp.2015.04.042

Google Scholar

[6] P. Molitor, V. Barron, T. Young, Surface treatment of titanium for adhesive bonding to polymer composites: A review, Int. J. Adhes. Adhes. 21 (2001) 129–136. https://doi.org/10.1016/S0143-7496(00)00044-0.

DOI: 10.1016/s0143-7496(00)00044-0

Google Scholar

[7] O. Lunder, F. Lapique, B. Johnsen, K. Nisancioglu, Effect of pre-treatment on the durability of epoxy-bonded AA6060 aluminium joints, Int. J. Adhes. Adhes. 24 (2004) 107–117. https://doi.org/10.1016/j.ijadhadh.2003.07.002.

DOI: 10.1016/j.ijadhadh.2003.07.002

Google Scholar

[8] H.C. Man, N.Q. Zhao, Enhancing the adhesive bonding strength of NiTi shape memory alloys by laser gas nitriding and selective etching, Appl. Surf. Sci. 253 (2006) 1595–1600. https://doi.org/10.1016/j.apsusc.2006.02.057.

DOI: 10.1016/j.apsusc.2006.02.057

Google Scholar

[9] H. Lee, J. Qu, Journal of Adhesion Science Microstructure , adhesion strength and failure path at a polymer / roughened metal interface, J. Adhes. Sci. Technol. (2013) 37–41.

DOI: 10.1163/156856103762302005

Google Scholar

[10] C. Spadaro, C. Dispenza, C. Sunseri, The influence of the nature of the surface oxide on the adhesive fracture energy of aluminium-bonded joints as measured by T-peel tests, Int. J. Adhes. Adhes. 28 (2008) 211–221. https://doi.org/10.1016/j.ijadhadh.2007.04.001.

DOI: 10.1016/j.ijadhadh.2007.04.001

Google Scholar

[11] N. Brack, A.N. Rider, The influence of mechanical and chemical treatments on the environmental resistance of epoxy adhesive bonds to titanium, Int. J. Adhes. Adhes. 48 (2014) 20–27. https://doi.org/10.1016/j.ijadhadh.2013.09.012.

DOI: 10.1016/j.ijadhadh.2013.09.012

Google Scholar

[12] C. Phipps, Laser Ablation and its Applications, (2009).

Google Scholar

[13] A. Ghumatkar, S. Budhe, R. Sekhar, M.D. Banea, S. De Barros, Influence of adherend surface roughness on the adhesive bond strength, Lat. Am. J. Solids Struct. 13 (2016) 2356–2370. https://doi.org/10.1590/1679-78253066.

DOI: 10.1590/1679-78253066

Google Scholar

[14] E.G. Baburaj, D. Starikov, J. Evans, G.A. Shafeev, A. Bensaoula, Enhancement of adhesive joint strength by laser surface modification, Int. J. Adhes. Adhes. 27 (2007) 268–276. https://doi.org/10.1016/j.ijadhadh.2006.05.004.

DOI: 10.1016/j.ijadhadh.2006.05.004

Google Scholar

[15] T. Şekercíoǧlu, H. Rende, A. Gülsöz, C. Meran, The effects of surface roughness on the strength of adhesively bonded cylindrical components, J. Mater. Process. Technol. 142 (2003) 82–86. https://doi.org/10.1016/S0924-0136(03)00463-1.

DOI: 10.1016/s0924-0136(03)00463-1

Google Scholar

[16] S. de Barros, P.P. Kenedi, S.M. Ferreira, S. Budhe, A.J. Bernardino, L.F.G. Souza, Influence of mechanical surface treatment on fatigue life of bonded joints, J. Adhes. 93 (2017) 599–612. https://doi.org/10.1080/00218464.2015.1122531.

DOI: 10.1080/00218464.2015.1122531

Google Scholar

[17] G. Rotella, L. Orazi, M. Alfano, S. Candamano, I. Gnilitskyi, Innovative high-speed femtosecond laser nano-patterning for improved adhesive bonding of Ti6Al4V titanium alloy, CIRP J. Manuf. Sci. Technol. 18 (2017) 101–106. https://doi.org/10.1016/ j.cirpj.2016.10.003.

DOI: 10.1016/j.cirpj.2016.10.003

Google Scholar