Microstructural Evolution and Tensile Strength of Laser-Welded Butt Joints of Ultra-High Strength Steels: Low and High Alloy Steels

Article Preview

Abstract:

The present study is focused on joining two ultra-high strength steels plates of 3 mm thickness using laser-welding. Abrasion resistant steel with martensitic structure, tensile strength (Rm) ≥ 2 GPa, and cold-deformed austenitic stainless steel, Rm 1.3 GPa, were used for the dissimilar butt joints. Two different laser energy inputs, 160 and 320 J/mm, were presented during welding. The weld morphology and microstructural evolution of the fusion zone were recorded using optical microscopy and electron back scattering diffraction (EBSD), respectively. The mechanical properties of the dissimilar joints were evaluated by hardness measurements and tensile tests. It was found that fusion zone has undergone a change in morphology and microstructure during welding depending upon the energy input. Analysis of the microstructural evolution in the fusion zone by EBSD examination showed that the presence of a mixture of small austenite grains in a matrix of martensite. The changes in hardness profiles and tensile strength under the experimental parameters were further reported.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

250-257

Citation:

Online since:

April 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Wang, Y. Yu, J. Yu, Y. Zhang, Y. Zhao, Q. Yuan, Microstructure evolution and corrosion behavior of dissimilar 304/430 stainless steel welded joints, J. Manuf. Process 50 (2020) 183-191.

DOI: 10.1016/j.jmapro.2019.12.015

Google Scholar

[2] X. Zhang, G. Mi, C. Wang, Microstructure and performance of hybrid laser-arc welded high-strength low alloy steel and austenitic stainless steel dissimilar joint, Opt. Laser Technol. 122 (2020).

DOI: 10.1016/j.optlastec.2019.105878

Google Scholar

[3] H. Di, Q. Sun, X. Wang, J. Li, Microstructure and properties in dissimilar/similar weld joints between DP780 and DP980 steels processed by fiber laser welding, J. Mater. Sci. Technol. 33 (2017) 1561-1571.

DOI: 10.1016/j.jmst.2017.09.001

Google Scholar

[4] E.M. Stanciu, A. Pascu, I. C. Roata, C. Croitoru, M. H. Tierean, Laser welding of dissimilar materials, Mater. Today-Proc. 19 (2019) 1066-1072.

DOI: 10.1016/j.matpr.2019.08.022

Google Scholar

[5] M.R. Nekouie Esfahani, J. Coupland, S. Marimuthu, Microstructural and mechanical characterisation of laser-welded high-carbon and stainless steel, Int. J. Adv. Manuf. Technol. 80 (2015) 1449-1456.

DOI: 10.1007/s00170-015-7111-5

Google Scholar

[6] H. Gong, S. Wang, P. Knysh, Y.P. Korkolis, Experimental investigation of the mechanical response of laser-welded dissimilar blanks from advanced- and ultra-high-strength steels, Mater. Des. 90 (2016) 1115-1123.

DOI: 10.1016/j.matdes.2015.11.057

Google Scholar

[7] W. Meng, Z. Li, J. Huang, Y. Wu, S. Katayama, Microstructure and softening of laser-welded 960 MPa grade high strength steel joints, J. Mater. Eng. Perform. 23 (2014) 538-544.

DOI: 10.1007/s11665-013-0795-5

Google Scholar

[8] M. Mazar Atabaki, N. Yazdian, J. Ma, R. Kovacevic, High power laser welding of thick steel plates in a horizontal butt joint configuration, Opt. Laser Technol. 83 (2016) 1-12.

DOI: 10.1016/j.optlastec.2016.03.016

Google Scholar

[9] K.P. Mehta, Sustainability in welding and processing. In: Gupta K. (eds) innovations in manufacturing for sustainability. Materials Forming, Machining and Tribology. Springer, Cham. (2019) 25-145.

DOI: 10.1007/978-3-030-03276-0_6

Google Scholar

[10] Y. Chang, G. Sproesser, S. Neugebauer, K. Wolf, R. Scheumann, A. Pittner, M. Rethmeier, M. Finkbeiner, Environmental and social life cycle assessment of welding technologies, Procedia CIRP 26 (2015) 293-298.

DOI: 10.1016/j.procir.2014.07.084

Google Scholar

[11] M.M.A. Khan, L. Romoli, G. Dini, Laser beam welding of dissimilar ferritic/martensitic stainless steels in a butt joint configuration, Opt. Laser Technol. 49 (2013) 125-136.

DOI: 10.1016/j.optlastec.2012.12.025

Google Scholar

[12] A. P. Tadamalle, Y.P. Reddy, E. Ramjee, K. Vijaya Kumar Reddy, Characterization of fully and partially penetrated Nd:YAG laser-weld dissimilar metal joints, J. Mech. Sci. Technol. 32 (2018) 615-621.

DOI: 10.1007/s12206-018-0108-2

Google Scholar

[13] H. Sumi, K. Oi, K. Yasuda, Effect of chemical composition on microstructure and mechanical properties of laser weld metal of high-tensile-strength steel, Weld World 59 (2015) 173-178.

DOI: 10.1007/s40194-014-0191-2

Google Scholar

[14] Z. Jiang, X. Chen, K. Yu, Z. Lei, Y. Chen, S. Wu, Z. Li, Improving fusion zone microstructure inhomogeneity in dissimilar-metal welding by laser welding with oscillation, Mater. Lett. 261 (2020).

DOI: 10.1016/j.matlet.2019.126995

Google Scholar

[15] M. Hietala, A. Hamada, M. Keskitalo, M. Jaskari, A. Järvenpää, Microstructural evolution of laser-welded dissimilar lap joints of martensitic abrasion resistant steel and cold-worked austenitic stainless steel, Key Eng. Mater. 861 (2020) 15-22.

DOI: 10.4028/www.scientific.net/kem.861.15

Google Scholar

[16] A. Järvenpää, M. Jaskari, A. Kisko, P. Karjalainen, Processing and properties of reversion‐treated austenitic stainless steels, Metals 10(2) (2020) 281.

DOI: 10.3390/met10020281

Google Scholar

[17] C. Pandey, Mechanical and metallurgical characterization of dissimilar P92/SS304 L welded joints under varying heat treatment regimes. Metall. Mater. Trans. A 51 (2020) 2126-2142.

DOI: 10.1007/s11661-020-05660-0

Google Scholar

[18] G. Dak, C. Pandey, A critical review on dissimilar welds joint between martensitic and austenitic steel for power plant application, J. Manuf. Process 58 (2020) 377-406.

DOI: 10.1016/j.jmapro.2020.08.019

Google Scholar

[19] C. Pandey, M.M. Mahapatra, P. Kumar, P. Kumar, N. Saini, J.G. Thakare, S. Kumar, Study on effect of double austenitization treatment on fracture morphology tensile tested nuclear grade P92 steel, Eng. Fail. Analyss. 96 (2019) 158-167.

DOI: 10.1016/j.engfailanal.2018.09.036

Google Scholar