[1]
K.-H. Stahl, Method for producing steel fibers. PCT, WO 2010/009687 A1 (2010).
Google Scholar
[2]
Y. Zheng, X. Wu, G. He, Q. Shang, J. Xu, Y. Sun, Mechanical Properties of Steel Fiber-Reinforced Concrete by Vibratory Mixing Technology, Advances in Civil Engineering, 11 (2018) 1–11.
DOI: 10.1155/2018/9025715
Google Scholar
[3]
M. Schulz, Stahlfasern: Eigenschaften und Wirkungsweisen, beton, 7 (2000) 382–387.
Google Scholar
[4]
A. Le Hoang, E. Fehling, Influence of steel fiber content and aspect ratio on the uniaxial tensile and compressive behavior of ultra high performance concrete, Construction and Building Materials (2017) 790–806.
DOI: 10.1016/j.conbuildmat.2017.07.130
Google Scholar
[5]
R. Böing; P. Guirguis; M. Müller; F. Schuhmacher; M. Schulz; M. Spindler, STEELCRETE. Detailinformationen zu Stahlfaserbeton für Planer und Verarbeiter.
Google Scholar
[6]
Z. Marcalíková, L. Procházka, M. Pešata, J. Boháčová, R. Čajka, Comparison of material properties of steel fiber reinforced concrete with two types of steel fiber, IOP Conference Series: Materials Science and Engineering (2019) 12039.
DOI: 10.1088/1757-899x/549/1/012039
Google Scholar
[7]
ISO 6892-1:2016, Metallic materials – Tensile testing – Part 1: Method of test at room temperature.
Google Scholar
[8]
M. Geiger, M. Merklein, M. Kaupper, Investigation of the mechanical behaviour of advanced high strength steels under various loading conditions, International Journal of Material Forming (2008) 225–228.
DOI: 10.1007/s12289-008-0361-0
Google Scholar
[9]
M. Merklein, A. Kuppert, A method for the layer compression test considering the anisotropic material behavior, International Journal of Material Forming, S1 (2009) 483–486.
DOI: 10.1007/s12289-009-0592-8
Google Scholar
[10]
D. Staud, M. Merklein, M. Borsutzki, S. Geisler, Zug-Druck-Versuche an Miniaturproben zur Erfassung von Parametern für kinematische Verfestigungsmodelle, in:PDF Stahleisen GmbH Düsseldorf, Tagungsband Werkstoffprüfung, 2009, 211–218.
Google Scholar
[11]
M. Rosenschon, S. Suttner, M. Merklein, Validation of Kinematic Hardening Parameters from Different Stress States and Levels of Plastic Strain with the Use of the Cyclic Bending Test, Key Engineering Materials (2015) 385–392.
DOI: 10.4028/www.scientific.net/kem.639.385
Google Scholar
[12]
J.E. Hockett, O.D. Sherby, Large strain deformation of polycrystalline metals at low homologous temperatures, Journal of the Mechanics and Physics of Solids, 2 (1975) 87–98.
DOI: 10.1016/0022-5096(75)90018-6
Google Scholar
[13]
R. Hill, A theory of the yielding and plastic flow of anisotropic metals, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1033 (1948) 281–297.
DOI: 10.1098/rspa.1948.0045
Google Scholar
[14]
C.O. Frederick, P.J. Armstrong, A mathematical representation of the multiaxial Bauschinger effect, Materials at High Temperatures, 1 (2007) 1–26.
DOI: 10.3184/096034007x207589
Google Scholar
[15]
Q. Yin, C. Soyarslan, A. Güner, A. Brosius, A.E. Tekkaya, A cyclic twin bridge shear test for the identification of kinematic hardening parameters, International Journal of Mechanical Sciences, 1 (2012) 31–43.
DOI: 10.1016/j.ijmecsci.2012.02.008
Google Scholar
[16]
J.L. Chaboche, G. Rousselier, On the Plastic and Viscoplastic Constitutive Equations—Part I: Rules Developed With Internal Variable Concept, Journal of Pressure Vessel Technology, 2 (1983) 153–158.
DOI: 10.1115/1.3264257
Google Scholar
[17]
F. Yoshida, T. Uemori, A model of large-strain cyclic plasticity describing the Bauschinger effect and workhardening stagnation, International journal of plasticity, 5 (2002) 661–686.
DOI: 10.1016/s0749-6419(01)00050-x
Google Scholar
[18]
S. Suttner, M. Rosenschon, M. Merklein, Evaluation of kinematic hardening models for multiple stress reversals under continuous cyclic shearing and multi-step bending, in:PDF, 10th European LS-DYNA Conference, (2015).
Google Scholar