Microstructure and Formability of Laser Welded Dissimilar Butt Joints of Austenitic-Ferritic Stainless Steels

Article Preview

Abstract:

Dissimilar laser welding of ferritic, type EN 1.4509, and austenitic, type EN 1.4307, stainless steel sheets was conducted at different energy inputs 30 and 80 J/mm and under different shield gases Ar and N and without shielding gas to evaluate the microstructure and hardness of the welded zone. The formability tests, using Erichsen principle, were carried out to determine the deformation behaviour of the dissimilar welded joints under biaxial straining. The fusion zone microstructure analysis revealed that the predominant phase structure is columnar coarse ferritic grains with slightly small content of austenite in the ferrite grain boundaries. The formability of the welded joints under Ar and N shielding gases is significantly improved, i.e., higher plasticity, compared with welded joints without shielding gas at both energy inputs.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

258-265

Citation:

Online since:

April 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. G. Thakare, C. Pandey, M. M. Mahapatra, R. S. Mulik, An assessment for mechanical and microstructure behavior of dissimilar material welded joint between nuclear grade martensitic P91 and austenitic SS304 L steel, J. Manuf. Process. 48 (2019) 249-259.

DOI: 10.1016/j.jmapro.2019.10.002

Google Scholar

[2] B. Yelamasetti , G. Rajyalakshmi, Effect of TIG, pulsed TIG and Interpulse TIG welding techniques on weld strength of dissimilar joints between Monel 400 and AISI 316, Mater. Today proceed. 19 (2019) 755-760.

DOI: 10.1016/j.matpr.2019.08.125

Google Scholar

[3] C. Wang, Y. Jianxing, Y. Zhang, Yan Zhao, Q. Yuan, Microstructure evolution and corrosion behavior of dissimilar 304/430 stainless steel welded joints, J. Manuf. Process. 50 (2020) 183-191.

DOI: 10.1016/j.jmapro.2019.12.015

Google Scholar

[4] Z. Liu, C. Fan, Z. Ming, C. Chen, C. Yang, S. Lin, L. Wang, Optimization of shielding gas composition in high nitrogen stainless steel gas metal arc welding, J. Manuf. Process. 58(2020)19-29.

DOI: 10.1016/j.jmapro.2020.08.001

Google Scholar

[5] H. Xia, C. Tan, R. Tian, S. Meng, L. Li, Ninshu Ma, Influence of shielding gas on microstructure and mechanical properties of laser welded–brazed Al/steel lapped joint, J. Manuf. Process 54 (2020) 347-358.

DOI: 10.1016/j.jmapro.2020.03.030

Google Scholar

[6] W. Chuaiphan, L. Srijaroenpramong, Heat input and shielding gas effects on the microstructure, mechanical properties and pitting corrosion of alternative low cost stainless steel grade 202, Results Mater. 7 (2020) 100111.

DOI: 10.1016/j.rinma.2020.100111

Google Scholar

[7] Y. Zhao, X. Shi, K. Yan, G. Wang , Zhanjun Jiab , Y. He, Effect of shielding gas on the metal transfer and weld morphology in pulsed current MAG welding of carbon steel, J. Mater. Process. Technol. 262 (2018) 382-391.

DOI: 10.1016/j.jmatprotec.2018.07.003

Google Scholar

[8] I. Bitharas, N.A. McPherson, W. McGhie, D. Roy, A.J. Moore, Visualisation and optimisation of shielding gas coverage during gas metal arc welding , J. Mater. Process. Technol. 255 (2020) 451-462.

DOI: 10.1016/j.jmatprotec.2017.11.048

Google Scholar

[9] N.S. H. Motlagh, P. Parvin, M. Jandaghi, M.J. Torkamany, The influence of different volume ratios of He and Ar in shielding gas mixture on the power waste parameters for Nd:YAG and CO2 laser welding, Opt. Laser Technol. 54 (2013)191-198.

DOI: 10.1016/j.optlastec.2013.04.027

Google Scholar

[10] B. Mvol and P. Kah, Effects of shielding gas control: welded joint properties in GMAW process optimization, Int J Adv Manuf Technol (2017) 88:2369–2387.

DOI: 10.1007/s00170-016-8936-2

Google Scholar

[11] S. Saravanan, N. Sivagurumanikandan, K. Raghukandan, Effect of heat input on microstructure and mechanical properties of Nd: YAG laser welded super duplex stainless steel-numerical and experimental approach, Optik, 185 (2019) 447-455.

DOI: 10.1016/j.ijleo.2019.03.145

Google Scholar

[12] Y. Geng, M. Akbari, A. Karimipour, A. Karimi, A. Soleimani, M. Afrand, Effects of the laser parameters on the mechanical properties and microstructure of weld joint in dissimilar pulsed laser welding of AISI 304 and AISI 420, Infrared Phys.Technol. 103 (2019) 103081.

DOI: 10.1016/j.infrared.2019.103081

Google Scholar

[13] H-Y Huang, Effects of shielding gas composition and activating flux on GTAW weldments, Mater. Des. 30 (2009) 2404-2409.

DOI: 10.1016/j.matdes.2008.10.024

Google Scholar

[14] P. Sathiya, S. Aravindan, R. Soundararajan, A. Noorul Haq, Effect of shielding gases on mechanical and metallurgical properties of duplex stainless-steel welds, J. Mater. Sci. 44 (2009) 114-121.

DOI: 10.1007/s10853-008-3098-8

Google Scholar

[15] P. Kah & J. Martikainen, Influence of shielding gases in the welding of metals, Int. J. Adv. Manuf. Technol. 64 (2013) 1411–1421.

DOI: 10.1007/s00170-012-4111-6

Google Scholar

[16] S. R. Kumar, A.K. Singh, S. Sandeep, P. Aravind, Investigation on Microstructural behavior and Mechanical Properties of plasma arc welded dissimilar butt joint of austenitic- ferritic stainless steels, Mater. Today: Proceed. 5 (2018) 8008–8015.

DOI: 10.1016/j.matpr.2017.11.485

Google Scholar

[17] A.S. Hamada, A. Kisko, A. Khosravifard, Ductility and formability of three high-Mn TWIP steels in quasi-static and high-speed tensile and Erichsen tests, M.A. Hassan, L.P. Karjalainen, D. Porter, Mater. Sci. Eng. A 712 (2018) 255-265.

DOI: 10.1016/j.msea.2017.11.111

Google Scholar