Determination of the Biaxial Anisotropy Coefficient Using a Single Layer Sheet Metal Compression Test

Article Preview

Abstract:

Numerical process design leads to cost and time savings in sheet metal forming processes. Therefore, a modeling of the material behavior is required to map the flow properties of sheet metal. For the identification of current yield criteria, the yield strength and the hardening behavior as well as the Lankford coefficients are taken into account. By considering the anisotropy as a function of rolling direction and stress state, the prediction quality of anisotropic materials is improved by a more accurate modeling of the yield locus curve. According to the current state of the art, the layer compression test is used to determine the corresponding Lankford coefficient for the biaxial tensile stress state. However, the test setup and the test procedure is quite challenging compared to other tests for the material characterization. Due to this, the test is only of limited suitability if only the Lankford coefficient has to be determined. In this contribution, a simplified test is presented. It is a reduction of the layer compression test to one single sheet layer. So the Lankford coefficient for the biaxial tensile stress state can be analyzed with a significantly lower test effort. The results prove the applicability of the proposed test for an easy and time efficient characterization of the biaxial Lankford coefficient.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

303-308

Citation:

Online since:

April 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F. Barlat, J.C. Brem, J.W. Yoon, K. Chung, R.E. Dick, D.J. Lege, F. Pourboghrat, S.-H. Choi, E. Chu, Plane stress yield function for aluminum alloy sheets—part 1: theory, International Journal of Plasticity 19 (2003) 1297–1319.

DOI: 10.1016/s0749-6419(02)00019-0

Google Scholar

[2] D. Banabic, Sheet Metal Forming Processes: Constitutive Modelling and Numerical Simulation, Springer Berlin Heidelberg, Berlin, Heidelberg, (2010).

Google Scholar

[3] M. Lenzen, M. Merklein, Determination of strain dependent anisotropy in layer compression tests and resulting influence on the yield locus modelling, NUMIFORM 2019 (2019) 127–130.

Google Scholar

[4] M.D. Xavier, R.L. Plaut, C.G. Schön, Uniaxial near plane strain tensile tests applied to the determination of the FLC0 formabillity parameter, Mat. Res. 17 (2014) 982–986.

DOI: 10.1590/s1516-14392014005000083

Google Scholar

[5] K. Pöhlandt, K. Lange, D. Banabic, J. Schöck, Consistent Parameters for Plastic Anisotropy of Sheet Metal (Part 1-Uniaxial and Biaxial Tests), in: AIP Conference Proceedings, Zaragoza (Spain), AIP, 18-20 April 2007, p.374–379.

DOI: 10.1063/1.2729542

Google Scholar

[6] M. Lenzen, M. Kraus, M. Merklein, Analytical friction force compensation of flow curves out of layer compression tests with the pin extrusion test, Int J Mater Form 38 (2020) 405.

DOI: 10.1007/s12289-020-01555-y

Google Scholar

[7] DIN EN ISO 16808:2014-11, Metallische Werkstoffe - Blech und Band - Bestimmung der biaxialen Spannung/Dehnung-Kurve durch einen hydraulischen Tiefungsversuch mit optischen Messsystemen (ISO 16808:2014); Deutsche Fassung EN ISO 16808:2014, Beuth Verlag GmbH, Berlin.

DOI: 10.31030/2099400

Google Scholar

[8] M. Merklein, A. Kuppert, A method for the layer compression test considering the anisotropic material behavior, Int J Mater Form 2 (2009) 483–486.

DOI: 10.1007/s12289-009-0592-8

Google Scholar

[9] J. Mendiguren, E.S. de Argandona, L. Galdos, Hot stamping of AA7075 aluminum sheets, IOP Conf. Ser.: Mater. Sci. Eng. 159 (2016) 12026.

DOI: 10.1088/1757-899x/159/1/012026

Google Scholar

[10] E. Siebel, Die Formgebung im bildsamen Zustand, Stahleisen, Düsseldorf, (1932).

Google Scholar