Local Strain Measurement in Tensile Test for an Optimized Characterization of Packaging Steel for Finite Element Analysis

Article Preview

Abstract:

The continuous development of packaging steels for thickness reduction processes requires an advanced process design. This process is increasingly supported by finite element analysis to simplify tool construction and material selection purposes. Therefore, the fundamental basis is always the precise material characterization of packaging steel commonly based on tensile tests to determine flow curve and Lankford coefficients. However, due to strong temper rolling and the occurrence of slip bands, most packaging steels just show little elongation in tensile test. Therefore, a method of Paul et al. to determine the flow curve with digital image correlation (DIC) methods in the necking zone was applied in this work to meet the requirements of packaging steel. For the use of anisotropic yield functions, it is necessary to determine Lankford coefficients. Thus, a new method is proposed to measure Lankford coefficients locally with a DIC system in tensile test, also in case that no homogenous forming condition is reached. With the presented approaches the packaging steel TH415 was characterized. In order to validate the developed methods, a demonstrator was simulated with anisotropic yield function Yld2000-2d . The comparison between simulation and experiment showed clear improvements in simulation accuracy when using the newly presented methods for packaging steel.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

309-316

Citation:

Online since:

April 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.K. Paul, S. Roy, S. Sivaprasad, H.N. Bar, S. Tarafder, Identification of post-necking tensile strain-behavior of steel sheet: an experimental investigation using digital image correlation technique, Journal of Materials Engineering and Performance 27 (2018) 5736–5743.

DOI: 10.1007/s11665-018-3701-3

Google Scholar

[2] F. Barlat, J.C. Brem, J.W. Yoon, K. Chung, R.E. Dick, D.J. Lege, F. Pourboghrat, S.-H. Choi, E. Chu, Plane stress yield function for aluminum alloy sheets—part 1: theory, International Journal of Plasticity 19 (2003) 1297–1319.

DOI: 10.1016/s0749-6419(02)00019-0

Google Scholar

[3] R.v. Mises, Mechanik der festen Körper im plastisch- deformablen Zustand, Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse 1913 (1913) 582–592.

DOI: 10.1002/ange.19390522011

Google Scholar

[4] R. Hill, A theory of the yielding and plastic flow of anisotropic metals, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 193 (1948) 281–297.

DOI: 10.1098/rspa.1948.0045

Google Scholar

[5] T. Beier, J. Gerlach, R. Roettger, P. Kuhn, Possibilities for specific utilization of material properties for an optimal part design, Journal of Physics: Conference Series 896 (2017) 12014. https://doi.org/10.1088/1742-6596/896/1/012014.

DOI: 10.1088/1742-6596/896/1/012014

Google Scholar

[6] I. Moldovan, M. Linnepe, L. Keßler, M. Köhl, Virtual modelling of forming processes in metal packaging industry, in: 12th European LS-DYNA Conference 2019, Koblenz Germany, p.101–103.

Google Scholar

[7] W. Luders, Über die äusserung der elasticität an stahlartigen eisenstaben und stahlstäben, und über eine beim biegen solcher stäbe beobachtete molecularbewegung, Dingler's Polytech. J. (1860) 18-22.

Google Scholar

[8] Z.L. Zhang, M. Hauge, J. Odegard, C. Thaulow, Determining material true stress-strain curve from tensile and specimens with rectangular cross-section, International Journal of Solids and Structures (1999) 3497–3516.

DOI: 10.1016/s0020-7683(98)00153-x

Google Scholar

[9] M. Joun, J.G. Eom, M.C. Lee, A new method for acquiring true stress-strain curves over a large range of strains using a tensile test and finite element method, Mechanics of Materials 40 (2008) 586–593.

DOI: 10.1016/j.mechmat.2007.11.006

Google Scholar

[10] A. Kuppert, M. Merklein, Enhanced investigation of flow and necking behavior of sheet metal within layer compression and tensile test, in: International Conference on Competitive Manufacturing, 2010, p.147–152.

Google Scholar

[11] DIN, Kaltgewalzte Verpackungsblecherzeugnisse – Elektrolytisch verzinnter und spezialverchromter Stahl Deutsche Fassung EN 10202:2001, Beuth Verlag GmbH, (2001).

DOI: 10.31030/9120786

Google Scholar

[12] DIN, Metallische Werkstoffe –Blech und Band –Bestimmung der biaxialen Spannung/Dehnung-Kurve durch einen hydraulischen Tiefungsversuch mit optischen Messsystemen (ISO 16808:2014), Beuth Verlag GmbH, (2014).

DOI: 10.31030/2099400

Google Scholar

[13] Q. Yin, A.E. Tekkaya, H. Traphöner, Determining cyclic flow curves using the in-plane torsion test, CIRP Annals 64 (2015) 261–264.

DOI: 10.1016/j.cirp.2015.04.087

Google Scholar