Performance of Ni-Cu/HZSM-5 Catalyst in Hydrocracking Process to Produce Biofuel from Cerbera manghas Oil

Article Preview

Abstract:

Catalytic cracking and hydroprocessing are two processes used to convert vegetable oil into biofuel, the combination of the two processes is called the hydrocracking reaction. Bintaro oil which is non-edible oil and has a considerable oil content of 35-50% can be recommended as a source of vegetable oil that can be processed into biogasoil. Catalyst preparation was carried out using the incipient wetness impregnation method. The loading support variable HZSM-5 used is 5% and 10%, and the Ni-Cu metal ratio is 1: 2. Ni-Cu / HZSM-5 catalyst was analyzed using BET, EDX, and XRD to determine the characteristics of the catalyst. Furthermore, the hydrocracking process was carried out by mixing 2 grams of Ni-Cu / HZSM-5 catalyst and 250 ml of Bintaro oil into a stirred batch reactor at a reaction temperature of 375 °C for 2 hours. The liquid product (biofuel) produced from the hydrocracking process was analyzed using GC-MS to determine the hydrocarbon composition. The reaction routes that dominate in this study are the decarbonylation and decarboxylation reactions. This can be seen from the largest hydrocarbon composition of the biofuel products that are C15 and C17. The highest value of biofuel selectivity was obtained by loading support at 5%, namely 0.6% gasoline, 5.4% kerosene, and 92.6% gasoil.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

149-156

Citation:

Online since:

May 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.E. Atabani, A.S. Silitonga, H.C. Ong, T.M.I. Mahlia, H.H. Masjuki, I.A. Badruddin, H. Fayaz, Non-Edible Vegetable Oils: A Critical Evaluation of Oil Extraction, Fatty Acid Compositions, Biodiesel Production, Characteristics, Engine Performance, and Emissions Production. Renew. Sust. Energ. Rev., 18 (2013) 211-245.

DOI: 10.1016/j.rser.2012.10.013

Google Scholar

[2] S.K. Kim, S. Brand, H. Lee, Y. Kim, J. Kim, Production of Renewable Diesel by Hydrotreatment of Soybean Oil: Effect of Reaction Parameters. Chem. Eng. J. 228 (2013) 114-123.

DOI: 10.1016/j.cej.2013.04.095

Google Scholar

[3] E. Furimsky, Hydroprocessing Challenges in Biofuels Production. Catal. Today 217 (2013) 13-56.

DOI: 10.1016/j.cattod.2012.11.008

Google Scholar

[4] J.K. Satyarthi, D. Srinivas, Fourier Transform Infrared Spectroscopic Method for Monitoring Hydroprocessing of Vegetable Oils to Produce Hydrocarbon-Based Biofuel. Energ. Fuel. 25 (2011) 3318-3322.

DOI: 10.1021/ef200722q

Google Scholar

[5] H. Zhang, H. Lin, Y. Zheng, The Role of Cobalt and Nickel in Deoxygenation of Vegetable Oils. Appl. Catal. B: Env. 160 (2014) 415-422.

DOI: 10.1016/j.apcatb.2014.05.043

Google Scholar

[6] A. Ishihara, N. Fukui, H. Nasu, T. Hashimoto, Hydrocracking of Soybean Oil using Zeolite-Alumina Composite Supported NiMo. Catal. Fuel 134 (2014) 611-617.

DOI: 10.1016/j.fuel.2014.06.004

Google Scholar

[7] V.T. da Silva, L.A. Sousa, Catalytic Upgrading of Fats and Vegetable Oils for the Production of Fuels, Chapter 3. The Role of Catalysis for the Sustainable Production of Bio-fuels and Bio-Chemicals: Elsevier B.V. (2013).

DOI: 10.1016/b978-0-444-56330-9.00003-6

Google Scholar

[8] B. Veriansyah, J.Y. Han, S.K. Kim, S. Hong, Y.J. Kim, J.S. Lim, Y.W. Shu, S. Oh, J. Kim, Production of Renewable Diesel by Hydroprocessing of Soybean Oil: Effect. Fuel 94 (2012) 578-585.

DOI: 10.1016/j.fuel.2011.10.057

Google Scholar

[9] M.D. Romero, J.A. Calles, A.Rodrıguez, J.C. Cabanelas, The Influence of Calcination Treatment over Bifunctional Ni/HZSM-5 Catalysts. Ind. Eng. Chem. Res. 37 (1998) 3846-3852.

DOI: 10.1021/ie980143i

Google Scholar

[10] H. Martinez-Grimaldo, H. Ortiz-Moreno, F. Sanchez-Minero, J. Ramirez, R. Cuevas-Garcia, J. Ancheyta-Juarez, Hydrocracking of Maya Crude Oil in Slurry- Phase Reactor. I. Effect of Reaction Temperature. Catal. Today 220 (2014) 295-300.

DOI: 10.1016/j.cattod.2013.08.012

Google Scholar

[11] X. Zheng, J. Chang, Y. Fu, One-pot Catalytic Hydrocracking of Diesel Distillate and Residual Oil Fractions Obtained from Bio-Oil to Gasoline-Range Hydrocarbon Fuel. Fuel 157 (2015) 107-114.

DOI: 10.1016/j.fuel.2015.05.002

Google Scholar

[12] M. Rabaev, M.V. Landau, R. Vidruk-Nehemya, V. Koukouliev, R. Zarchin, M. Herskowitz, Conversion of Vegetable Oils on Pt/Al2O3/SAPO-11 to Diesel and Jet Fuels Containing Aromatics. Fuel 161 (2015) 287-294.

DOI: 10.1016/j.fuel.2015.08.063

Google Scholar

[13] Y.R. Noor, M. Khazali, I.N.N. Suryadiputra, Panduan Pengenalan Mangrove di Indonesia. PHKA/WI-IP, Bogor (1999).

Google Scholar

[14] D. Endriana, Sintesis Biodiesel (Metil ester) dari Minyak Biji Bintaro (Cerbera Odollam Gaertn) hasil ekstraksi. Kimia MIPA-UI, Universitas Indonesia, Jakarta (2007).

DOI: 10.24252/al-kimia.v4i1.1453

Google Scholar

[15] Irwanto, Keanekaragaman Fauna pada Habitat Mangrove, Makalah, Yogyakarta (2006).

Google Scholar

[16] Y.A. Purwanto, B.I. Setiawan, K. Sunandar, Pengembangan Tanaman Bintaro untuk Pemenuhan Bioenergi sebagai Kegiatan Tanaman Kehidupan HTI, Palembang (2011).

Google Scholar

[17] S. Vichaphund, Production of aromatic compounds from catalytic fast pyrolysis of Jatropha residues using metal/HZSM-5 prepared by ion-exchange and impregnation methods, Renew. Energ. 79 (2015) 28–37.

DOI: 10.1016/j.renene.2014.10.013

Google Scholar

[18] M. Al-Muttaqii, F. Kurniawansyah, D.H. Prajitno, A. Roesyadi, Bio-kerosene and Bio-gasoil from Coconut Oils via Hydrocracking Process over NiFe/HZSM-5 Catalyst, Bull. Chem. React. Eng. Catal. 14(2) (2019) 309.

DOI: 10.9767/bcrec.14.2.2669.309-319

Google Scholar

[19] L. Marlinda, M. Al-Muttaqii, A. Roesyadi, Formation of hydrocarbon compounds during the hydrocracking of non-edible vegetable oils with cobalt-nickel supported on hierarchical HZSM-5 catalyst, IOP Conference Series: Earth and Environmental Science. IOP Publ. 67 (2017).

DOI: 10.1088/1755-1315/67/1/012022

Google Scholar

[20] S. Sartipi, M. Alberts, M.J. Meijerink, T.C. Keller, J, Pérez-Ramírez, J. Gascon, F. Kapteijn, Towards Liquid Fuels from Biosyngas: Effect of Zeolite Structure in Hierarchical-Zeolite-Supported Cobalt Catalysts. Chem. Sus. Chem. 6 (2013) 1646–1650.

DOI: 10.1002/cssc.201300339

Google Scholar