Cheap Cellulase Production by Aspergillus sp. VTM1 Through Solid State Fermentation of Coffee Pulp Waste

Article Preview

Abstract:

Coffee pulp biomass waste can easily be found anywhere in Indonesia, considering it is the fourth world's largest coffee exporter. The utilization of coffee pulp is very limited and is categorized as a source of pollutants in water bodies and soils. In contrast, coffee pulp waste is very potential because 63% of the main compound is cellulose. Microbial utilization of this waste for enzyme production purposes, especially cellulase, is a breakthrough that may lead to reduce production costs. Initial investigations showed that Aspergillus sp. VTM1 through solid-state fermentation (SSF) could produce cellulases. Optimal cellulase could be produced if 10 g coffee pulp with 10% moisture is inoculated using 108 spores/mL of Aspergillus sp. VTM1 for 48 hours at 30 °C. Hydrolysis of 1% carboxymethyl cellulose (CMC) substrate in 50 mM acetate buffer pH 5 by this cellulase showed that the enzyme activity reached up to 1.18 U/mL. The optimum pH of the enzyme was 5 and stable at 3-3.5 and 4-7. The success of the first step of this investigation will be a cheap way of producing cellulases.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

159-164

Citation:

Online since:

May 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R.C. Kuhad, R. Gupta, A. Singh, Microbial cellulases and their industrial applications, Enzyme Res. 2011 (2011) 280696.

Google Scholar

[2] D.S. Chahal, Solid-state fermentation with Trichoderma reesei for cellulase production, Appl. Environ. Microbiol. 49 (1) (1985) 205-210.

DOI: 10.1128/aem.49.1.205-210.1985

Google Scholar

[3] X-Z. Zhang, Y-H.P. Zhang, Cellulases: characteristics, sources, production, and applications, in: S-T. Yang, H.A. El-Enshasy, N. Thongcul (Eds.), Bioprocessing Technologies in Biorefinery for Sustainable Production of Fuels, Chemicals, and Polymers, John Wiley & Sons, Inc., New Jersey, 2013, pp.131-146.

DOI: 10.1002/9781118642047.ch8

Google Scholar

[4] K. Muzakhar, Sutoyo, A.B. Saragih, Phosphate solubilizing bacteria adaptive to vinasse, J. Math. Fundam. Sci. 47 (2) (2015) 219-225.

DOI: 10.5614/j.math.fund.sci.2015.47.2.8

Google Scholar

[5] M. Sohail, R. Siddiqi, A. Ahmad, S.A. Khan, Cellulase production from Aspergillus niger MS82: effect of temperature and pH, N. Biotechnol. 25 (6) (2009) 437-441.

DOI: 10.1016/j.nbt.2009.02.002

Google Scholar

[6] S. Mrudula, R. Murugammal, Production of cellulase by Aspergillus niger under submerged and solid-state fermentation using coir waste as a substrate, Braz. J. Microbiol. 42 (2011) 1119-1127.

DOI: 10.1590/s1517-83822011000300033

Google Scholar

[7] K. Muzakhar, A Consortium of Three Enzymes: xylanase, arabinofuranosidase, and cellulase from Aspergillus sp. which liquefied coffee pulp wastes, IOP Conf. Ser.: Mater. Sci. Eng. 546 (2) (2019) 022013.

DOI: 10.1088/1757-899x/546/2/022013

Google Scholar

[8] W. Yuniar, Skrining dan identifikasi kapang selulolitik pada proses vermikomposting tandan kosong kelapa sawit, Undergraduate Thesis, Universitas Jember, Jember, (2013).

Google Scholar

[9] A. Pandey, C.R. Soccol, D. Mitchell, New developments in solid state fermentation: I- bioprocesses and products, Process Biochem. 35 (10) (2000) 1153-1169.

DOI: 10.1016/s0032-9592(00)00152-7

Google Scholar

[10] Information on http://www.ico.org.

Google Scholar

[11] S. Roussos, M.de los A. Aquiáhuatl, M.del R. Trejo-Hernández, I.G. Perraud, E. Favela, M. Ramakrishna, M. Raimbault, G. Viniegra-González, Biotechnological management of coffee pulp - isolation, screening, characterization, selection of caffeine-degrading fungi and natural microflora present in coffee pulp and husk, Appl. Microbiol. Biotechnol. 42 (1995) 756-762.

DOI: 10.1007/bf00171958

Google Scholar

[12] G. Corro, L. Paniagua, U. Pal, F. Bañuelos, M. Rosas, Generation of biogas from coffee- pulp and cow-dung co-digestion: Infrared studies of postcombustion emissions, Energy Convers. Manag. (2013) 471-481.

DOI: 10.1016/j.enconman.2013.07.017

Google Scholar

[13] L.G.A. Ong, S. Abd-Aziz, S. Noraini, M.I.A. Karim, M.A. Hassan, Enzyme production and profile by Aspergillus niger during solid substrate fermentation using palm kernel cake as substrate, Appl. Biochem. Biotechnol. 118 (1-3) (2004) 73-79.

DOI: 10.1385/abab:118:1-3:073

Google Scholar

[14] S. Ubaidillah, K. Muzakhar, Sugar-rich hydrolyzates from coffee pulp waste which produced under solid state fermentation by Pestalotiosis sp. VM9 and Aspergillus sp. VTM5, and its efficiency as medium for single cell protein Saccharomyces cerevisiae, IOP Conf. Ser.: Mater. Sci. Eng. 546 (6) (2019) 062033.

DOI: 10.1088/1757-899x/546/6/062033

Google Scholar

[15] T.M. Wood, K.M. Bhat, Methods for measuring cellulase activities, Methods Enzymol. 160 (1988) 87-112.

Google Scholar

[16] K. Selvam, M. Govarthanan, S.K. Kannan, M. Govindharaju, B. Senthilkumar, T. Selvankumar, A. Sengottaiyan, Process optimization of cellulase production from alkali-treated coffee pulp and pineapple waste using Acinetobacter sp. TSK-MASC, RSC Adv. 4 (25) (2014) 13045-13051.

DOI: 10.1039/c4ra00066h

Google Scholar

[17] M. Narra, G. Dixit, J. Divecha, D. Madamwa, A.R. Shah, Production of cellulases by solid state fermentation with Aspergillus terreus and enzymatic hydrolysis of mild alkali-treated rice straw, Bioresour. Technol. 121 (2012) 355-361.

DOI: 10.1016/j.biortech.2012.05.140

Google Scholar

[18] M. Raimbault, D.A. Alazard, Culture method to study fungal growth in solid fermentation, Eur. J. Appl. Microbiol. Biotechnol. 9 (1980) 199-209.

DOI: 10.1007/bf00504486

Google Scholar

[19] F. Deschamps, C. Giuliano, M. Asther, M.C. Huet, S. Roussos, Cellulase production by Trichoderma harzianum in static and mixed solid-state fermentation reactors under nonaseptic conditions, Biotechnol. Bioeng. 27 (9) (1985) 1385-1388.

DOI: 10.1002/bit.260270917

Google Scholar

[20] S.J.B. Duff, W.D. Murrayh, Bioconversion of forest products industry waste cellulosics of fuel ethanol : a review, Bioresour. Technol. 55 (1) (1996) 1-33.

DOI: 10.1016/0960-8524(95)00122-0

Google Scholar

[21] N.M. Mubarak, J.R. Wong, K.W. Tan, J.N. Sahu, E.C. Abdullah, N.S. Jayakumar, P. Ganesan, Immobilization of cellulase enzyme on functionalized multiwall carbon nanotubes, J. Mol. Catal. B: Enzym. 107 (2014) 124-131.

DOI: 10.1016/j.molcatb.2014.06.002

Google Scholar

[22] D. Liu, R. Zhang, X. Yang, H. Wu, D. Xu, Z. Tang, Q. Shen, Thermostable cellulase production of Aspergillus fumigatus Z5 under solid- state fermentation and its application in degradation of agricultural wastes, Int. Biodeterior. Biodegrad. 65 (5) (2011) 717-725.

DOI: 10.1016/j.ibiod.2011.04.005

Google Scholar

[23] S.P. Gautam, P.S. Bundela, A.K. Pandey, J. Khan, M.K. Awasthi, S. Sarsaiya, Optimization for the production of cellulase enzyme from municipal solid waste residue by two novel cellulolytic fungi, Biotechnol. Res. Int. 2011 (2011) 810425.

DOI: 10.4061/2011/810425

Google Scholar