Influence of the Bolt Material Properties on the Ultimate Capacity of End Plate Bolted Joint Subjected to Column Loss

Article Preview

Abstract:

This paper investigates the performance of extended stiffened end-plate bolted beam-to-column joints subjected a column loss scenario by means of finite element simulations. An advanced numerical model was developed, and its effectiveness was validated against the experimental results. The influence of the bolt strengthening on the column loss action was investigated changing the grade of bolts. The results showed that the joint performance under column loss scenario are deeply related to the development of the catenary action that depends from the connection ductility; therefore increasing the bolt material strength will provide beneficial effects on the joint capacity under the column loss.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

133-139

Citation:

Online since:

May 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Formisano, G. Di Lorenzo, I. Iannuzzi, R. Landolfo, Seismic vulnerability and fragility of existing Italian industrial steel buildings, Open Civil Engineering Journal Open Access (2017) 11 1122-1137.

DOI: 10.2174/1874149501711011122

Google Scholar

[2] Y. Shi, G. Shi and Y. Wang, Experimental and theoretical analysis of the moment- rotation behaviour of stiffened extended end-plate connections,, J. Constr. Steel Res., 63 (2007) 1279-1293.

DOI: 10.1016/j.jcsr.2006.11.008

Google Scholar

[3] G. Di Lorenzo, A. Formisano, R. Landolfo, F.M. Mazzolani, G. Terracciano, On the use of cold-formed thin walled members for vertical addition of existing masonry buildings" Proceedings of SDSS, Rio 2010: International Colloquium Stability and Ductility of Steel Structures, (2010) 2 945-952.

DOI: 10.1080/19648189.2014.974832

Google Scholar

[4] G. Di Lorenzo, A. Formisano, R. Landolfo, On the origin of I beams and quick analysis on the structural efficiency of hot-rolled steel members, Open Civil Engineering Journal Open Access (2017) M3, 332-344.

DOI: 10.2174/1874149501711010332

Google Scholar

[5] F. Rizzo, G. Di Lorenzo, A. Formisano, R. Landolfo, Time-Dependent Corrosion Wastage Model for Wrought Iron Structures, Journal of Materials in Civil Engineering, (2019) 31 (8), Article number 4019165.

DOI: 10.1061/(asce)mt.1943-5533.0002710

Google Scholar

[6] G. Di Lorenzo, E. Babilio, A. Formisano, R. Landolfo, Innovative steel 3D trusses for preservating archaeological sites: Design and preliminary results, Journal of Constructional Steel Research (2019), 154, 250-26.

DOI: 10.1016/j.jcsr.2018.12.006

Google Scholar

[7] R. Tartaglia, M. D'Aniello, A. De Martino, G. Di Lorenzo, Influence of EC8 rules on P-Delta effects on the design and response of steel MRF,. Ingegneria Sismica: International Journal of Earthquake Engineering (2018) 35(3), 104-120.

Google Scholar

[8] T. Pali, V. Macillo, M.T. Terracciano, B. Bucciero, L. Fiorino, R. Landolfo, In-plane quasi-static cyclic tests of nonstructural lightweight steel drywall partitions for seismic performance evaluation,, Earthq. Eng. Struct. Dyn. 47 (2018) 1566–1588.

DOI: 10.1002/eqe.3031

Google Scholar

[9] R. Landolfo, T. Pali, B. Bucciero, M.T. Terracciano, S. Shakeel, V. Macillo, O. Iuorio, L. Fiorino, Seismic response assessment of architectural non-structural LWS drywall components through experimental tests,, J. Constr. Steel Res. 162 (2019) 105575.

DOI: 10.1016/j.jcsr.2019.04.011

Google Scholar

[10] L. Fiorino, B. Bucciero, R. Landolfo, Evaluation of seismic dynamic behaviour of drywall partitions, façades and ceilings through shake table testing,, Eng. Struct. 180 (2019) 103–123.

DOI: 10.1016/j.engstruct.2018.11.028

Google Scholar

[11] L. Fiorino, O. Iuorio, V. Macillo, M.T. Terracciano, T. Pali, R. Landolfo, Seismic Design Method for CFS Diagonal Strap-Braced Stud Walls: Experimental Validation,, J. Struct. Eng. 142 (2016) 04015154.

DOI: 10.1061/(asce)st.1943-541x.0001408

Google Scholar

[12] V. Macillo, O. Iuorio, M.T. Terracciano, L. Fiorino, R. Landolfo, Seismic response of Cfs strap-braced stud walls: Theoretical study,, Thin-Walled Struct. 85 (2014) 301–312.

DOI: 10.1016/j.tws.2014.09.006

Google Scholar

[13] M. D'Aniello, E.M. Güneyisi, R. Landolfo, K., Mermerdaş, Analytical prediction of available rotation capacity of cold-formed rectangular and square hollow section beams,, Thin-Walled Structures (2014) 77 141-152.

DOI: 10.1016/j.tws.2013.09.015

Google Scholar

[14] M. D'Aniello, E.M. Güneyisi, R. Landolfo, K Mermerdaş, Prediction of the flexural overstrength factor for steel beams using artificial neural network,, Steel and Composite Structures (2014) 17(3), 215-236.

DOI: 10.12989/scs.2014.17.3.215

Google Scholar

[15] M. D'Aniello, E.M. Güneyisi, R. Landolfo, K. Mermerdaş, Predictive models of the flexural overstrength factor for steel thin-walled circular hollow section beams,. Thin-Walled Structures (2015), 94, 67-78.

DOI: 10.1016/j.tws.2015.03.020

Google Scholar

[16] E.M. Güneyisi, M. D'Aniello, R. Landolfo, K. Mermerdaş, A novel formulation of the flexural overstrength factor for steel beams,. J. Constr. Steel Res. (2013), 90, 60-71.

DOI: 10.1016/j.jcsr.2013.07.022

Google Scholar

[17] L. Fiorino, T. Pali, R. Landolfo, Out-of-plane seismic design by testing of non-structural lightweight steel drywall partition walls,, Thin-Walled Structures (2018) 130, 213-230.

DOI: 10.1016/j.tws.2018.03.032

Google Scholar

[18] R. Landolfo, L. Fiorino, O. Iuorio, A specific procedure for seismic design of cold-formed steel housing,. Advanced Steel Construction, (2010) 6, 603-618.

DOI: 10.1016/j.tws.2009.02.004

Google Scholar

[19] L. Fiorino, O. Iuorio, V. Macillo, R. Landolfo, Performance-based design of sheathed CFS buildings in seismic area, Thin-Walled Structures, (2012) 61, 248-257.

DOI: 10.1016/j.tws.2012.03.022

Google Scholar

[20] L. Fiorino, O. Iuorio, R. Landolfo, Seismic analysis of sheathing-braced cold-formed steel structures, Engineering Structures, (2012) 34, 538-547.

DOI: 10.1016/j.engstruct.2011.09.002

Google Scholar

[21] M. D'Aniello, R. Tartaglia, D. Cassiano, Experimental investigation of the inelastic tensile behaviour of non-preloadable grade 8.8 bolts,, Ingegneria sismica, International journal of Earthquake Engineering, 2 (2020) 92-110.

Google Scholar

[22] M. D'Aniello, D. Cassiano, R. Landolfo, Monotonic and cyclic inelastic tensile response of European preloadable GR10.9 bolt assemblies,. Journal of Constructional Steel Research, (2016), 124, 77–90.

DOI: 10.1016/j.jcsr.2016.05.017

Google Scholar

[23] M. D'Aniello, D. Cassiano, R. Landolfo, Simplified criteria for finite element modelling of European preloadable bolts,. Steel and Composite Structures, (2017), 24(6), 643-658.

Google Scholar

[24] R. Tartaglia, M. D'Aniello, R. Landolfo, G.A. Rassati, J. Swanson, Finite element analyses on seismic response of partial strength extended stiffened joints,, COMPDYN 2017 - Proceedings of the 6th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, (2017) 2, 4952-4964.

DOI: 10.7712/120117.5775.17542

Google Scholar

[25] D. Cassiano, M. D'Aniello, C. Rebelo, Parametric finite element analyses on flush end-plate joints under column removal,. Journal of Constructional Steel Research (2017) 137 77-92.

DOI: 10.1016/j.jcsr.2017.06.012

Google Scholar

[26] D. Cassiano, M. D'Aniello, C. Rebelo, Seismic behaviour of gravity load designed flush end-plate joints,. Steel and Composite Structures, (2018), 26(5) 621-634.

Google Scholar

[27] R. Tartaglia, M. D'Aniello, Nonlinear Performance of Extended Stiffened End Plate Bolted Beam-to-column Joints Subjected to Column Removal, Open Civ. Eng. J. 11 (2017) 369–383.

DOI: 10.2174/1874149501711010369

Google Scholar

[28] R. Tartaglia, M. D'Aniello, A. De Martino, Ultimate performance of external end-plate bolted joints under column loss scenario accounting for the influence of the transverse beam, Open Constr. Build. Technol. J. 11 (2017) 369–383.

DOI: 10.2174/1874836801812010132

Google Scholar

[29] ABAQUS Analysis user's manual version 6.14. ABAQUS Inc.; (2014).

Google Scholar