Lateral Force Resisting Systems Made of Cold-Formed Steel Material: Proposal of Seismic Design Criteria for 2nd Generation of Eurocode 8

Article Preview

Abstract:

The current edition of Eurocode 8 does not cover the design of the Cold-Formed steel (CFS) building structures under the seismic design condition. As part of the revision process of Euro-code 8 to reflect the outcomes of extensive research carried out in the past decade, University of Naples “Federico II” is involved in the validation of existing seismic design criteria and development of new rules for the design of CFS systems. In particular, different types of Lateral Force Resisting System (LFRS) are analyzed that can be listed in the second generation of Eurocode 8. The investigated LFRS’s include CFS strap braced walls and CFS shear walls with steel sheets, wood, or gypsum sheathing. This paper provides the background information on the research works and the reference design standards, already being used in some parts of the world, which formed the basis of design criteria for these LFRS systems. The design criteria for the LFRS-s common to CFS buildings would include rules necessary for ensuring the dissipative behavior, appropriate values of the behavior factor, guidelines to predict the design strength, geometrical and mechanical limitations.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

127-132

Citation:

Online since:

May 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Landolfo, L. Fiorino, O. Iuorio, A Specific Procedure for Seismic Design of Cold-Formed Steel Housing., Adv. Steel Constr. 6 (2010) 603–618.

DOI: 10.1016/j.tws.2009.02.004

Google Scholar

[2] L. Fiorino, O. Iuorio, R. Landolfo, Seismic analysis of sheathing-braced cold-formed steel structures, Eng. Struct. 34 (2012) 538–547. https://doi.org/10.1016/j.engstruct.2011.09.002.

DOI: 10.1016/j.engstruct.2011.09.002

Google Scholar

[3] L. Fiorino, M.T. Terracciano, R. Landolfo, Experimental investigation of seismic behaviour of low dissipative CFS strap-braced stud walls, J. Constr. Steel Res. 127 (2016) 92–107. https://doi.org/10.1016/j.jcsr.2016.07.027.

DOI: 10.1016/j.jcsr.2016.07.027

Google Scholar

[4] L. Fiorino, V. Macillo, R. Landolfo, Experimental characterization of quick mechanical connecting systems for cold-formed steel structures, Adv. Struct. Eng. 20 (2017) 1098–1110. https://doi.org/10.1177/1369433216671318.

DOI: 10.1177/1369433216671318

Google Scholar

[5] R. Landolfo, O. Iuorio, L. Fiorino, Experimental seismic performance evaluation of modular lightweight steel buildings within the ELISSA project, Earthq. Eng. Struct. Dyn. (2018) 1–23.

DOI: 10.1002/eqe.3114

Google Scholar

[6] R. Landolfo, Lightweight steel framed systems in seismic areas : Current achievements and future challenges, Thin-Walled Struct. 140 (2019) 114–131.

DOI: 10.1016/j.tws.2019.03.039

Google Scholar

[7] L. Fiorino, O. Iuorio, V. Macillo, R. Landolfo, Performance-based design of sheathed CFS buildings in seismic area, Thin-Walled Struct. 61 (2012) 248–257.

DOI: 10.1016/j.tws.2012.03.022

Google Scholar

[8] L. Fiorino, V. Macillo, R. Landolfo, Shake table tests of a full-scale two-story sheathing-braced cold-formed steel building, Eng. Struct. 151 (2017) 633–647.

DOI: 10.1016/j.engstruct.2017.08.056

Google Scholar

[9] G. Di Lorenzo, A. Formisano, R. Landolfo, F.M. Mazzolani, G. Terracciano, On the use of cold-formed thin walled members for vertical addition of existing masonry buildings, in: Proc. SDSS' Rio 2010 Int. Colloq. Stab. Ductility Steel Struct., 2010 945–952.

DOI: 10.1080/19648189.2014.974832

Google Scholar

[10] G. Di Lorenzo, A. Formisano, R. Landolfo, On the Origin of I Beams and Quick Analysis on the Structural Efficiency of Hot-rolled Steel Members, Open Civ. Eng. J. 11 (2017) 332–344.

DOI: 10.2174/1874149501711010332

Google Scholar

[11] R. Tartaglia, M. D'Aniello, A. De Martino, Ultimate performance of external end-plate bolted joints under column loss scenario accounting for the influence of the transverse beam, Open Constr. Build. Technol. J. 11 (2017) 369–383.

DOI: 10.2174/1874836801812010132

Google Scholar

[12] R. Tartaglia, M. D'Aniello, M. Zimbru, R. Landolfo, Finite element simulations on the ultimate response of extended stiffened end-plate joints, Steel Compos. Struct. 27 (2018) 727–745. https://doi.org/10.12989/scs.2018.27.6.727.

Google Scholar

[13] M. D'Aniello, R. Tartaglia, D. Cassiano, Experimental investigation of the inelastic tensile behaviour of non-preloadable grade 8.8 bolts, Ing. Sismica, Int. J. Earthq. Eng. 2 (2020) 92–110.

Google Scholar

[14] P. Castaldo, E. Nastri, V. Piluso, Ultimate behaviour of RHS temper T6 aluminium alloy beams subjected to non-uniform bending: Parametric analysis, Thin-Walled Struct. 115 (2017) 129–141. https://doi.org/10.1016/j.tws.2017.02.006.

DOI: 10.1016/j.tws.2017.02.006

Google Scholar

[15] P. Castaldo, E. Nastri, V. Piluso, FEM simulations and rotation capacity evaluation for RHS temper T4 aluminium alloy beams, Compos. Part B Eng. 115 (2017) 124–137. https://doi.org/10.1016/j.compositesb.2016.10.026.

DOI: 10.1016/j.compositesb.2016.10.026

Google Scholar

[16] A.B. Francavilla, M. Latour, V. Piluso, G. Rizzano, Design of full-strength full-ductility extended end-plate beam-to-column joints, J. Constr. Steel Res. 148 (2018) 77–96.

DOI: 10.1016/j.jcsr.2018.05.013

Google Scholar

[17] M. Latour, M. D'Aniello, M. Zimbru, G. Rizzano, V. Piluso, R. Landolfo, Removable friction dampers for low-damage steel beam-to-column joints, Soil Dyn. Earthq. Eng. 115 (2018) 66–81. https://doi.org/10.1016/j.soildyn.2018.08.002.

DOI: 10.1016/j.soildyn.2018.08.002

Google Scholar

[18] F. Rizzo, G. Di Lorenzo, A. Formisano, R. Landolfo, Time-Dependent Corrosion Wastage Model for Wrought Iron Structures, J. Mater. Civ. Eng. 31 (2019) 04019165. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002710.

DOI: 10.1061/(asce)mt.1943-5533.0002710

Google Scholar

[19] A. Formisano, G. Di Lorenzo, I. Iannuzzi, R. Landolfo, Seismic Vulnerability and Fragility of Existing Italian Industrial Steel Buildings, Open Civ. Eng. J. 11 (2017) 1122–1137. https://doi.org/10.2174/1874149501711011122.

DOI: 10.2174/1874149501711011122

Google Scholar

[20] G. Di Lorenzo, E. Babilio, A. Formisano, R. Landolfo, Innovative steel 3D trusses for preservating archaeological sites: Design and preliminary results, J. Constr. Steel Res. 154 (2019) 250–262. https://doi.org/10.1016/j.jcsr.2018.12.006.

DOI: 10.1016/j.jcsr.2018.12.006

Google Scholar

[21] S. Costanzo, R. Tartaglia, G. Di Lorenzo, A. De Martino, Seismic behaviour of EC8-compliant moment resisting and concentrically braced frames, Buildings. 9 (2019).

DOI: 10.3390/buildings9090196

Google Scholar

[22] R. Tartaglia, M. D'Aniello, A. De Martino, G. Di Lorenzo, Influence of EC8 rules on P-Delta effects on the design and response of steel MRF., Ing. Sismica Int. J. Earthq. Eng. 35 (2018) 104–1.

Google Scholar

[23] R. Tartaglia, M. D'Aniello, G.A. Rassati, Proposal of AISC-compliant seismic design criteria for ductile partially-restrained end-plate bolted joints, J. Constr. Steel Res. 159 (2019) 364–383.

DOI: 10.1016/j.jcsr.2019.05.006

Google Scholar

[24] R. Tartaglia, M. D'Aniello, G.A. Rassati, J.A. Swanson, Influence of composite slab on the nonlinear response of extended end-plate beam-to-column joints, Key Eng. Mater. 763 (2017) 818–825.

DOI: 10.4028/www.scientific.net/kem.763.818

Google Scholar

[25] R. Tartaglia, M. D'Aniello, Nonlinear Performance of Extended Stiffened End Plate Bolted Beam-to-column Joints Subjected to Column Removal, Open Civ. Eng. J. 11 (2017) 369–383. https://doi.org/10.2174/1874149501711010369.

DOI: 10.2174/1874149501711010369

Google Scholar

[26] CEN, EN 1998-1 Eurocode 8: Design of Structures for earthquake resistance-Part 1: General rules, seismic actions and rules for buildings, European Committee for Standardization, Brussels, (2004).

DOI: 10.3403/03244372

Google Scholar

[27] S. Shakeel, Quantifying the seismic ductility of lightweight steel lateral force resisting systems through procedures of FEMA P695, in: 1nternational Colloq. Stab. Ductility Steel Struct. SDSS 2019, Prague, (2019).

DOI: 10.7712/120119.7348.20812

Google Scholar

[28] I. Shamim, C.A. Rogers, Numerical evaluation: AISI S400 steel-sheathed CFS framed shear wall seismic design method, Thin-Walled Struct. 95 (2015) 48–59. https://doi.org/10.1016/j.tws.2015.06.011.

DOI: 10.1016/j.tws.2015.06.011

Google Scholar

[29] FEMA, FEMA P695: Quantification of Building Seismic Performance Factors, Washigton, 749 DC, USA, (2009).

Google Scholar

[30] CEN, EN 1993-1-3 Eurocode 3: Design of steel structures-Part 1-3: General rules-Supplementary rules for cold-formed members and sheeting, European Committee for Standardization, Brussels, (2006).

DOI: 10.3403/02338401u

Google Scholar

[31] N. Yanagi, C. Yu, Effective Strip Method for the Design of Cold-Formed Steel Framed Shear Wall with Steel Sheet Sheathing, J. Struct. Eng. 140 (2014) 04013101.

DOI: 10.1061/(asce)st.1943-541x.0000870

Google Scholar

[32] AISI-S100-16 North American Specification for the Design of Cold-Formed Steel Structural Members, American Iron and Steel Institute (AISI), (2016).

Google Scholar

[33] AISI-S400-15 North American Standard for Seismic Design of Cold formed Steel Structural Systems, American Iron and Steel Institute (AISI), (2015).

Google Scholar

[34] CEN, EN 1993-1-1 Eurocode 3: Design of steel structures-Part 1-1: General rules and rules for buildings, European Committee for Standardization, Brussels, (2005).

Google Scholar