[1]
A.A. Popovich, Additive technologies as a new way to create promising functional materials, Metal Science and Heat Treatment 775 v.1 (2020) 19-25.
Google Scholar
[2]
P. Kuznetcov, A. Zhukov, A. Deev et al., Structure and properties of the bulk standard samples and cellular energy absorbers, IntechOpen, Rieka, (2018).
DOI: 10.5772/intechopen.72973
Google Scholar
[3]
J. Sedlaka, D. Rican, M. Piska, L. Rozkosny, Study of materials produced by powder metallurgy using classical and modern additive laser technology, Procedia Engineering 100 (2015) 1232-1241.
DOI: 10.1016/j.proeng.2015.01.488
Google Scholar
[4]
J. Zhang, Y.-G. Jung, Additive Manufacturing: materials, processes, quantifications and applications, Butterworth-Heinemann, Oxford, (2018).
Google Scholar
[5]
F. Froes, R. Boyer, Additive manufacturing for the aerospace industry, Elsevier, Amsterdam, (2019).
Google Scholar
[6]
D.I. Wimpenny, P.M. Pandey, L.J. Kumar, Advances in 3D printing & additive manufacturing technologies, Springer, Singapore, (2017).
Google Scholar
[7]
A. Zhukov, B. Barakhtin, I. Shakirov, V. Bobyr, The Emergence of inhomogeneity in the chemical composition of powder applicable for manufacturing products by additive technologies, Procedia Manufacturing 36 (2019) 19-25.
DOI: 10.1016/j.promfg.2019.08.004
Google Scholar
[8]
Edward D. Herderick, Additive manufacturing in the minerals, metals, and materials community: past, present, and exciting future, JOM 68 (2016) 721-723.
DOI: 10.1007/s11837-015-1799-4
Google Scholar
[9]
A.I. Rodionov, I.Yu. Efimochkin, A.A. Buyakina, M.N. Letnikov, Spheroidization of metal powders (review), Aviation Materials and Technologies 43 v.S1 (2016) 60-64.
Google Scholar
[10]
E.P. Wohlfarth, Handbook of ferromagnetic materials, North-Holland Pub. Co., Amsterdam, (1982).
Google Scholar
[11]
L. Zhou et al., Architecture and magnetism of Alnico, Acta Materialia 74 (2014) 224-233.
Google Scholar
[12]
Information on https://www.astm.org/Standards/E8.
Google Scholar
[13]
Information on https://www.astm.org/Standards/D6110.htm.
Google Scholar
[14]
A. Rudskoy, N. Vargasov, B. Barakhtin, Thermoplastic deformation of metals, Polytechnic University Publishing House, St. Petersburg, (2018).
Google Scholar
[15]
Di Wang, Yongqiang Yang, Study on the designing rules and processability of porous structure based on selective laser melting (SLM), Journal of Materials Processing Technology 213 (2013) 1734–1742.
DOI: 10.1016/j.jmatprotec.2013.05.001
Google Scholar
[16]
M.L. Green, R.C. Sherwood, C.C. Wong, Powder metallurgy processing of Cr-Co-Fe permanent magnet alloys, J. Appl. Phys. 53 (1982) 2398-2400.
DOI: 10.1063/1.330824
Google Scholar
[17]
C. Qiu, S. Yue, N.J.E. Adkins et al., Influence of processing conditions on structure and compressive properties of cellular lattice structures fabricated by selective laser melting, Materials Science & Engineering A628 (2015) 188–197.
DOI: 10.1016/j.msea.2015.01.031
Google Scholar
[18]
A. Zhukov, B. Barakhtin, P. Kuznetsov, Study of strength characteristics of steel specimens after selective laser melting of powder materials 17-4PH, 316L, 321, Physics Procedia 89 (2017) 179-186.
DOI: 10.1016/j.phpro.2017.08.012
Google Scholar
[19]
P. Hanzl, M. Zete, T. Bakša, T. Kroupa, The influence of processing parameters on the mechanical properties of SLM parts, Procedia Engineering 100 (2015) 1405-1413.
DOI: 10.1016/j.proeng.2015.01.510
Google Scholar
[20]
G.F. Korznikova, Structure formation under hot compression deformation of hard magnetic alloy Fe-30% Cr-8% Co, Physical Mesomechanics 2 v.18 (2015) 89-94.
Google Scholar