Microstructure-Impact Toughness Relationships in Quenched and Tempered Low Carbon Low Alloy Steels

Article Preview

Abstract:

The quantitative microstructure - impact toughness relationships in two batches of the same steel grade subjected to quenching and tempering (Q&T) have been established via characterization using EBSD technique and FIB visualization. The EBSD-based criterion for separation of structural constituents in microstructure of Q&T low carbon low alloy steels is proposed. Impact toughness differences between two steel batches subjected to nominally identical Q&T are caused by the changes in the volume fraction of structural constituents caused by various cooling conditions at quenching stage. High volume fraction of bainite containing more distorted bainitic ferrite and the highest amount of brittle cementite precipitates leads to the increase in strength and to the decrease in impact toughness.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

216-221

Citation:

Online since:

May 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P.A. Revel-Muroz, E.G. Ilyin, A.N. Chentsov, M.M. Kantor, V.A. Bozhenov, A.M. Arsenkin, Reliability of oil storage tanks used in the zapolyare-purpe pipeline system (in russian), Sci. & technol.: oil and oil products pipeline transportation. 2 (2012) 14-21.

Google Scholar

[2] M.M. Kantor, V.A. Bozhenov, Scattering of values of impact toughness of low-alloy steel in the ductile-brittle transition temperature region, Inorg, Mat.: Appl.Res. 5 (2014) 293-302.

DOI: 10.1134/s207511331404025x

Google Scholar

[3] A.V. Rudchenko, Steels for heat-treated electric-welded gas and oil pipes. (in russian), Met. Sci. & Heat. Treat. 7 (1977) 51-53.

Google Scholar

[4] T. Araki, K. Shibata, M. Enomoto, Reviewed concept on the microstructural identification and terminology of low carbon ferrous bainites, Mat. Sci. For. 56-58 (1990) 225-280.

DOI: 10.4028/www.scientific.net/msf.56-58.275

Google Scholar

[5] T. Araki, M. Enomoto, K. Shibata, Microstructural Aspects of Bainitic and Bainitic-like Ferritic Structures of Continuously Cooled Low Carbon (<0,3%) HSLA, Mat. Trans. JIM. 32 (1991) 729-736.

DOI: 10.2320/matertrans1989.32.729

Google Scholar

[6] S.W. Thompson, G. Krauss, Ferritic microstructures in continuously cooled low- and ultralow-carbon steels, ISIJ Int. 35 (1995) 937–945.

DOI: 10.2355/isijinternational.35.937

Google Scholar

[7] K.P. Mingard, B. Roebuck, E.G. Bennett, M. Thomas, B.P. Wynne, E.J. Palmiere, Grain size measurement by EBSD in complex hot deformed metal alloy microstructures, Journ. of Micr. 227 (2007) 298-308.

DOI: 10.1111/j.1365-2818.2007.01814.x

Google Scholar

[8] S. Zaefferer, S.I. Wright, D. Raabe, Three-Dimensional Orientation Microscopy in a Focused Ion Beam–Scanning Electron Microscope: A New Dimension of Microstructure Characterization. Metal. & Mat.Trans. A. 39A (2008) 374-389.

DOI: 10.1007/s11661-007-9418-9

Google Scholar

[9] M.M. Kantor, K.G. Vorkachev, Microstructure and Substructure of Pearlite in Hypoeutectoid Ferritic-Pearlitic Steels, Met. Sci. & Heat Treat. 5 (2017) 265–271.

DOI: 10.1007/s11041-017-0140-y

Google Scholar

[10] C.A. Volkert, A.M. Minor, Focused Ion Beam Microscopy and Micromachining, MRS Bul. 32 (2007) 389-399.

DOI: 10.1557/mrs2007.62

Google Scholar

[11] М.А. Shtremel, Informativeness of measurements of impact toughness, Met. Sci. & Heat Treat 11 (2008) 37-51.

DOI: 10.1007/s11041-009-9099-7

Google Scholar

[12] S. Zaefferer, A critical review of orientation microscopy in SEM and TEM, Cryst. Res. & Technol. 46 (2011) 607-628.

DOI: 10.1002/crat.201100125

Google Scholar

[13] M.F. Ashby, The deformation of plastically non-homogeneous materials, The Phil. Mag.: A Journ. of Theor. Exp. and Appl. Phys. 21 (1970) 399-424.

Google Scholar

[14] S. Zaefferer, P. Romano, F. Friedel, EBSD as a tool to identify and quantify bainite and ferrite in low-alloyed Al-TRIP steels, Journ. of Micr. 230 (2008) 499–508.

DOI: 10.1111/j.1365-2818.2008.02010.x

Google Scholar

[15] T. Saario, K.Wallin, K. Torronen, On the microstructure basis of cleavage fracture initiation in ferritic and bainitic steels, Journ. of eng. Mat. & technol. 106 (1984) 173-177.

DOI: 10.1115/1.3225695

Google Scholar

[16] A.V. Karpenko, D.V. Karpenko, D.B. Solovev, Influence of Crumb Rubber Vulcanization Degree on the Quality of Asphalt Concrete Used in Road Construction, Materials Science Forum, Vol. 992 (2020) 31-35. [Online]. Available: https://doi.org/10.4028/www.scientific.net/MSF.992.31.

DOI: 10.4028/www.scientific.net/msf.992.31

Google Scholar