Investigation of the Effect of Implantation of Aluminum Alloys by Gas and Metal Ions on the Structure and Phase Composition of the Implanted Layer

Article Preview

Abstract:

The article presents studies of the structure and phase composition of aluminum alloys after ion implantation. It is shown that the effect of accelerated ions (Cu + Pb) (E = 30 keV, j = 100 μA / cm2) on an alloy without a cladding layer already at a dose of 1016 cm - 2 leads to the formation of a developed subgrain structure in the initially deformed alloy. With an increase in the ion current density and radiation dose, the cellular structure of the implanted aluminum alloys becomes more regular - well-formed cells are observed practically throughout the entire volume of the sample under study. The average width of the dislocation-free regions reaches 2.5 μm with the width of the boundaries not exceeding 0.6 μm.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

235-241

Citation:

Online since:

May 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] I.V. Perinskaya, V.N. Lyasnikov, V.V. Perinskiy, Tekhnologiya metallov. 8 (2009) 22-27.

Google Scholar

[2] V.S. Vavilov, A.R. Chelyadinsky, Uspekhi fizicheskikh nauk. 165(3) (1995) 347-358.

Google Scholar

[3] V.M. Shulaev, A.A. Andreev, V.P. Rudenko, Physics Engineering of Surface. 4(3-4) (2006) 136-142.

Google Scholar

[4] I.A. Kurzina et al., Proceedings of higher educational institutions. Physics. 54 (11-3) (2011) 112-119.

Google Scholar

[5] S.N. Zvonkov et al, Letters to the Journal of Experimental and Theoretical Physics. 94 (2) (2011) 116-119.

Google Scholar

[6] R. J. Rodrıguez et al, Vacuum. 52(1-2) (1999) 187-192.

Google Scholar

[7] Z. Zhan et al, Surface and Coatings Technology. 128 (2000) 256-259.

Google Scholar

[8] Z. Zhan et al, Wear. 220 (2) (1998) 161-167.

Google Scholar

[9] K. G. Kostov et al, Surface and Coatings Technology, 186 (1-2) (2004). 204-208.

Google Scholar

[10] G. W. Malaczynski et al, Journal of materials engineering and performance. 6 (2) (1997) 223-239.

Google Scholar

[11] E. Hug et al, Surface and Coatings Technology. 206 (24) (2012) 5028-5035.

Google Scholar

[12] P.M. Natishan, E. McCafferty, G. K. Hubler, Materials Science and Engineering: A, 116 (1989) 41-46.

Google Scholar

[13] P. Visuttipitukul, T. Aizawa., H. Kuwahara, Materials transactions. 44 (12) (2003), 2695-2700.

Google Scholar

[14] J. Jagielski et al, Vacuum. 70 (2-3) (2003) 147-152.

Google Scholar

[15] V.V. Ovchinnikov, N.V. Uchevatkina, I.A. Kurbatova, E.V. Lukyanenko, S.V. Yakutina, Periodico Tche Quimica. 16 (32) (2019) 945-966.

DOI: 10.52571/ptq.v16.n32.2019.963_periodico32_pgs_945_966.pdf

Google Scholar

[16] I.N. Fridlyander, K.V. Chuistov, A.L. Berezina, N.I. Kolobnev, Kiev, Naukova Dumka, (1992).

Google Scholar

[17] S.V. Palazova, Abstracts of scientific-technical reports. Conferences, Minsk, March 29–30, (1990).

Google Scholar

[18] A. Kehrel, Y. Zhng, G. Shumacher, N. Wanderka, J. Nucl. Mater. 207 (1993) 153-158.

Google Scholar

[19] T.V. Vakhniy et al. Surface. X-ray, synchrotron and neutron research. 4 (2010) 94-99.

Google Scholar

[20] V.M. Anishchik, L.A. Vasilyeva, S.I. Zhukova, Physics and chemistry of material processing. 1 (1998).

Google Scholar

[21] L.I. Kaigorodova, V.M. Zamyatin, V.I. Popov, FMM. 4(98) (2004) 75–82.

Google Scholar