Amorphous Alloys Atomic Structure Investigation by Means of Electron Microscopy and Diffraction

Article Preview

Abstract:

In the paper, the atomic structure of amorphous and nanocrystalline alloys of the electrolytically obtained CoP, NiP, CoNiP, CoW, and CoNiW systems has been studied. The structure was investigated by electron microscopy and diffraction using a Libra 200 HR FE transmission electron microscope at an accelerating voltage of 200 kV within a temperature range of 50-35 °C. The obtained radial atom distribution function and the coordination sphere radii are in good agreement with the data for the cobalt structure in the cubic and hexagonal modifications. The high coordination numbers of the third and fourth coordination spheres allow suggesting a predominantly cubic structure of the local atom environment in CoP samples but somewhat lower, which is explained by the presence of free volume and phosphorus atoms distorting the local structure. When heating, the near atomic order also corresponds to the cubic phase of cobalt, and the ordering occurs in the second, third, and fourth coordination spheres. The data obtained for CoNiP alloys indicate that by configuration, the local atomic environment is closer to the hexagonal structure of nickel. In general, the structure of the CoP-CoNiP system alloy films obtained by electrolytic deposition is already in one of the local minima of the total system energy, which is confirmed by the near atomic order similar to the cubic phase of cobalt or hexagonal phase of nickel. This determines the good stability of the structure and properties during thermal exposure.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

254-261

Citation:

Online since:

May 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Abrosimova, Amorphous and Nanocrystalline Metallic Alloys Progress in Metallic Alloys InTech (2016),.

DOI: 10.5772/64499

Google Scholar

[2] Ch. Hausleitner, Structure of amorphous FeZr alloys J Non-Cryst. Solids, Vol. 144 (1992) 175-186.

DOI: 10.1016/s0022-3093(05)80398-9

Google Scholar

[3] A. Hirata, Direct imaging of local atomic ordering in a Pd–Ni–P bulk metallic glass using -corrected transmission electron microscopy Ultramic. Vol 107, 2 (2007) 116-123.

DOI: 10.1016/j.ultramic.2006.06.002

Google Scholar

[4] A. Hirata, Local structural fluctuation in Pd–Ni–P bulk metallic glasses examined using nanobeam electron diffraction, J Alloy. Comp. Vol. 483, 1 (2009) 64-69.

DOI: 10.1016/j.jallcom.2008.07.214

Google Scholar

[5] I. Bakonyi, Relevance of Fe atomic volumes for the magnetic properties of Fe-rich metallic glasses JMMM. Vol 324, 22 (2012) 3961-3965.

DOI: 10.1016/j.jmmm.2012.07.003

Google Scholar

[6] J.H. Perepezko, Deformation alloying and transformation reactions. J Alloy. Comp. Vol 483, 1 (2009) 14-19.

Google Scholar

[7] S. Fang, Relationship between the widths of supercooled liquid regions and bond parameters of Mg-based bulk metallic glasses, J Non-Cryst. Sol. Vol 321 (2003) 120–125.

DOI: 10.1016/s0022-3093(03)00155-8

Google Scholar

[8] A. Inoue, Stabilization of metallic supercooled liquid and bulk amorphous alloys Acta mater. Vol 48 (2000) 279-306.

DOI: 10.1016/s1359-6454(99)00300-6

Google Scholar

[9] B.Y. Zhang, Solid-Solution Phase Formation Rules for Multi-component Alloys Adv. Eng. Mat., Vol 10, 6 (2008) 534-539.

Google Scholar

[10] A.M. Glezer, Nanocrystals hardened from melt, M .: Fizmatlit (2011) 240.

Google Scholar

[11] A.M. Glezer, S.V. Dobatkin, N.S. Perov, M.R. Plotnikova, A.V. Shalimova, A method of processing products from soft magnetic amorphous alloys by severe plastic deformation: US Pat. 2391414 Rus. Federation: MPK7 C21D6 04, C22F1 00, H01F1 153 applicant and copyright holder FSUE TsNIIchermet im. I.P. Bardeen" application 18.07.2008 publ. 10.06.2010 Bul. No 16.

DOI: 10.4028/www.scientific.net/msf.584-586.227

Google Scholar

[12] R.V. Sundeev, In situ observation of the crystalline⇒amorphous state, phase transformation in Ti2NiCu upon high-pressure torsion, Mat. Sci. Eng. A. Vol 679 (2017) 1-6.

DOI: 10.1016/j.msea.2016.10.028

Google Scholar

[13] M.V. Gorshenkov, Effect of stabilization of the size of crystals Γ- (Fe, Ni) in Fe – Ni – B amorphous tape FMM. T 118 2 (2017) 186-192.

Google Scholar

[14] W. Klement, Jun. Non-crystalline Structure in Solidified Gold–Silicon Alloys Nature. Vol 187 (1960) 869–870.

DOI: 10.1038/187869b0

Google Scholar

[15] P. Duwez, Continuous Series of Metastable Solid Solutions in Silver‐Copper Alloys, J Appl. Phys. Vol 31 (1960) 1136.

DOI: 10.1063/1.1735777

Google Scholar

[16] P.H. Gaskell, A new structural model for amorphous transition metal silicides, borides, phosphides and carbides, J. of Non-Cryst. Sol. Vol 32, 1–3 (1979) 207-224.

DOI: 10.1016/0022-3093(79)90073-5

Google Scholar

[17] J.L. Finney, Random Packings and the Structure of Simple Liquids I The Geometry of Random Close Packing Proc. R. Soc. Lond. A Vol 319 (1970) 479-493.

DOI: 10.1098/rspa.1970.0189

Google Scholar

[18] E.V. Pustovalov, Local Atomic Ordering in Amorphous Fe-Based Alloys Phys. stat. sol. (a) Vol 135 (1993) K1–K4.

DOI: 10.1002/pssa.2211350130

Google Scholar

[19] D.J.H. Cockayne, The Study of Nanovolumes of Amorphous Materials Using Electron Scattering Ann. Rev. Mat. Res. Vol 37 (2007) 159-187.

DOI: 10.1146/annurev.matsci.35.082803.103337

Google Scholar

[20] H. Nörenberg, Estimation of radial distribution functions in electron diffraction experiments: physical, mathematical and numerical aspects, J. Appl. Cryst. vol 32 (1997) 911-916.

DOI: 10.1107/s0021889899006603

Google Scholar

[21] D.R.G. Mitchell, RDFTools: A software tool for quantifying short-range ordering in amorphous materials Microsc. Res. Tech. Vol 75 2 (2012) 153-163.

DOI: 10.1002/jemt.21038

Google Scholar

[22] Gatan Microscopy Suite Software, http://www.gatan.com/products/tem-analysis/gatan-microscopy-suite-software.

Google Scholar

[23] S.S. Grabchikov, Amorphous electrolytically deposited metal alloys, Minsk: BSU Publishing Center, 2006, 186 p.

Google Scholar

[24] G. Bergerhoff, In Crystallographic Databases F H Allen et al (Hrsg.) International Union of Crystallography, 1987, pp.77-95.

Google Scholar

[25] A. Belsky, New developments in the Inorganic Crystal Structure Database (ICSD): accessibility in support of materials research and design Acta Cryst. Vol 58 (2002) 364-369.

DOI: 10.1107/s0108768102006948

Google Scholar

[26] O.V. Voitenko, Electron tomography and STEM investigations of the structure of multilayer amorphous and nanocrystalline alloys of CoP-CoNiP, CoW-CoNiW systems under external action Bull. Russian Acad. of Sci.: Phys. Vol 75(9) (2011) 1209-1212.

DOI: 10.3103/s1062873811090292

Google Scholar

[27] E.B. Modin, Atomic structure and crystallization processes of amorphous (Co,Ni)–P metallic alloy. J Alloy. Comp. Vol 641 (2015) 139-143.

DOI: 10.1016/j.jallcom.2015.04.060

Google Scholar