[1]
I. Yadroitsev, I. Smurov, Surface morphology in selective laser melting of metal powders, J. Phys. Procedia. 12 (2011) 264-270.
DOI: 10.1016/j.phpro.2011.03.034
Google Scholar
[2]
Li xiang Yang, Xiao Peng Peng, Features of molten pool free surface in laser processing, J. Prog. Nat. Sci. 11 (2001) 45-52.
Google Scholar
[3]
Xiao hu YE, Xi Chen, Simulation of the fluid flow and heat transfer in laser heating melt pool using a region-dividing method Chin. J. Lasers. 29 (2002) 855-858.
Google Scholar
[4]
S.A. Khairallah, A.T. Anderson, Mesoscopic simulation model of selective laser melting of stainless steel powder, J. Mater. Process. Technol. 214 (2014) 2627-2636.
DOI: 10.1016/j.jmatprotec.2014.06.001
Google Scholar
[5]
S.A. Khairallah, A.T. Anderson, A. Rubenchik, at all, Laser powder-bed fusion additive manufacturing: physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones, J. Acta Mat. 108 (2016) 36-45.
DOI: 10.1016/j.actamat.2016.02.014
Google Scholar
[6]
Shibai Liu, Jichang Liu, Jinxuan Chen, at all, Influence of surface tension on the molten pool morphology in laser melting,.
Google Scholar
[7]
Jan P. Kusinski, Sławomir Kąc, A. Kopia and at all, Laser modification of the materials surface layer – a review paper, AGH The Un-ty of Sci. and Technol., Poland (2012).
Google Scholar
[8]
D.B. Purushothaman, M. Ponnusamy, Status of laser transformation hardening of steel and its alloys: a review, J. Emerging Materials Research. 8 (2) (2019) 188-205.
Google Scholar
[9]
N.A. Smirnova, A.I. Misyurov, Features of structure formation during laser processing. Bul. of the Bauman Moscow state technical un-ty, 2012, 115-129.
Google Scholar
[10]
O.N. Voytovich, I.O. Sokorov, The research into the influence of laser thermal processing parameters on the properties of strengthened surface layers. Bul. of the Bel.-Rus un-ty. 2 (39) (2013) 6-14.
Google Scholar
[11]
M.M. Zhuravlev, O.P. Reshetnikova, and A.G. Miroshkin, The effect of laser radiation power on the change in hardness of the surface layer of parts, Rus., Sci. and tech. Bul. of SSTU. 4(68) (2012) 130-132.
Google Scholar
[12]
V. Gusev, V. Morozov, and D. Gavrilovm, Multiple-Factor Model of Hardness of Steel 40H13 after Laser Processing, EasyChair Preprint 3114, (2020).
Google Scholar
[13]
V.I. Shastin, M.I. Ovchinnikova, Improving the wear resistance of a bearing assembly by laser spraying, J. Young Sci. 21 (155) (2017) 155-158.
Google Scholar
[14]
A.G. Grigoryants, I.N. Shiganov, and A.I. Misyurov, Technological processes of laser processing, Moscow (2006) 664.
Google Scholar
[15]
S.S. Yashkova, Laser surface hardening, J. Young Sci. 1(135) (2017), 99-101.
Google Scholar
[16]
V.F. Losev, V.Yu. Morozova, and V.P. Tsipilev, Physical bases of laser processing of materials, Rus, Tomsk. (2011) 192.
Google Scholar
[17]
V.I. Yugov, Laser thermal hardening – a highly effective resource-saving technology, Bul. Laser-inform. 23 (398) (2008) 1-8.
Google Scholar
[18]
V.P. Biryukov, A.A. Fishkov, D.Yu. Tatarkin, at all, The effect of laser hardening with a round, profiled and oscillating beam on increasing the service life of machine parts, DOI: 10.22184 / 1993-7296.2017.63.3.28.34 technological equipment and technologies.
DOI: 10.22184/1993-7296.2017.63.3.28.34
Google Scholar
[19]
R.S. Lakhkar, Y.S. Shin, J.M. Crane, Predictive modeling of multi-track laser hardening of AISI 4140 steel-materials, J. Sci. and eng. A480 (2008) 209-217.
DOI: 10.1016/j.msea.2007.07.054
Google Scholar
[20]
V.G. Gusev, Theory and practice of planning multi-factor experiments, Rus. Vladimir (2010).
Google Scholar