Influence of Structure and Dispersivity of Copper on its Melting Features

Article Preview

Abstract:

The melting parameters (melting point, specific heat of fusion) of copper samples with different volume structure (fine-grained, submicrocrystalline) and dispersivity (fine powder) were explored using differential thermal analysis. It was found that change in the metal structure from bulk coarse-grained to submicrocrystalline, and to submicron powders led to depression of melting point by ~18 °C and of specific heat of fusion by ~45 % relative to the standard values. It was shown that the high-energy impact on the starting coarse-grained metal used to obtain the samples with modified structure and dispersivity (severe plastic deformation, electric explosion of thin wires) caused changes in the composition of the material. An explanation for the observed influence of structure and dispersion factors on the melting parameters has been proposed on the basis of X-ray diffraction data, electron microscopy, and model calculations.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

269-274

Citation:

Online since:

May 2021

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] O. D. Neikov, S. S. Naboychenko, N. A. Yefimov, Handbook of Non-Ferrous Metal Powders: Technologies and Applications, 2nd ed., Elsevier, Amsterdam, (2019).

DOI: 10.1016/b978-0-08-100543-9.00023-3

Google Scholar

[2] A. Gusev, A. Rempel, Nanocrystalline Materials. Cambridge, CISP, (2004).

Google Scholar

[3] W. Luo, K. Su, K. Li, Q. Li, Connection between nanostructured materials' size-dependent melting and thermodynamic properties of bulk materials, Solid State Commun. 151 (2011) 229–233.

DOI: 10.1016/j.ssc.2010.11.025

Google Scholar

[4] Ph. Buffat, P. Borel, Size effect on the melting temperature of gold particles, Phys. Rev. A. 13 (1976) 2287–2298.

DOI: 10.1103/physreva.13.2287

Google Scholar

[5] N.P. Young, M.A. van Huis, H.W. Zandbergen, et al., Transformations of gold nanoparticles investigated using variable temperature high-resolution transmission electron microscopy, Ultramicroscopy. 110 (2010) 506–516.

DOI: 10.1016/j.ultramic.2009.12.010

Google Scholar

[6] J. Sun, S.L. Simon, The melting behavior of aluminum nanoparticles, Thermochim. Acta. 463 (2007) 32–40.

Google Scholar

[7] J. Mu, Z.W. Zhu, H.F. Zhang, et al., Size dependent melting behaviors of nanocrystalline in particles embedded in amorphous matrix, J. Appl. Phys. 111 (2012) 043515 (1–4).

DOI: 10.1063/1.3686624

Google Scholar

[8] A.F. Lopeandia, J. Rodr´ıguez-Viejo, Size-dependent melting and supercooling of Ge nanoparticles embedded in a SiO2 thin film, Thermochim. Acta. 461 (2007) 82–87.

DOI: 10.1016/j.tca.2007.04.010

Google Scholar

[9] C. Zou, Y. Gao, B. Yang, Q. Zhai, Size-dependent melting properties of Sn nanoparticles by chemical reduction synthesis, Trans. Nonferrous Met. Soc. China. 20 (2010) 248−253.

DOI: 10.1016/s1003-6326(09)60130-8

Google Scholar

[10] H. Jiang, K. Moon, H. Dong, et al., Size-dependent melting properties of tin nanoparticles, Chem. Phys. Lett. 429 (2006) 492–496.

DOI: 10.1016/j.cplett.2006.08.027

Google Scholar

[11] O.A. Yeshchenko, I.M. Dmytruk, A.A. Alexeenko, A.M. Dmytruk, Size-dependent melting of spherical copper nanoparticles, Phys. Rev. B. 75 (2007) 085434 (1–6).

DOI: 10.1103/physrevb.75.085434

Google Scholar

[12] X. Yu, Z. Zhan, The effects of the size of nanocrystalline materials on their thermodynamic and mechanical properties, Nanoscale Res. Lett. 9 (2014) 516 (1–6).

Google Scholar

[13] F. Gao, Z. Gu, Melting Temperature of Metallic Nanoparticles, in: M. Aliofkhazraei (Ed.) Handbook of Nanoparticles, Springer International Publishing Switzerland, 2016, p.661–690.

DOI: 10.1007/978-3-319-15338-4_6

Google Scholar

[14] L. T. DeLuca, Nanoenergetic Ingredients to Augment Solid Rocket Propulsion, in: Q-L Yan, G-Q He, P-J Liu, M Gozin (Eds.), Nanomaterials in Rocket Propulsion Systems, Elsevier, Amsterdam, 2018, 592 p.

DOI: 10.1016/b978-0-12-813908-0.00006-x

Google Scholar

[15] M. Borodachenkova, W. Wen, A. M. de Bastos Pereira, High-Pressure Torsion: Experiments and Modeling, in: M. Cabibbo (Ed.), Severe Plastic Deformation Techniques, IntechOpen, 2017, p.93–112.

DOI: 10.5772/intechopen.69173

Google Scholar

[16] Yu.F. Ivanov, M.N. Osmonoliev, V.S. Sedoi, et al., Productions of ultra-fine powders and their use in high energetic compositions, Propellants, Explos. Pyrotech. 28 (2003) 319–333.

DOI: 10.1002/prep.200300019

Google Scholar

[17] CRC Handbook of Chemistry and Physics, 82nd Edition (Ed. David R. Lide), CRC Press, Boca Raton FL, (2002).

DOI: 10.1021/ja0048230

Google Scholar

[18] B. Hallstedt, D. Risold, L.J. Gauckler. Thermodynamic Assessment of the Copper-Oxygen System, J. Phase Equilib. 15 (1994) 483–499.

DOI: 10.1007/bf02649399

Google Scholar