[1]
O. D. Neikov, S. S. Naboychenko, N. A. Yefimov, Handbook of Non-Ferrous Metal Powders: Technologies and Applications, 2nd ed., Elsevier, Amsterdam, (2019).
DOI: 10.1016/b978-0-08-100543-9.00023-3
Google Scholar
[2]
A. Gusev, A. Rempel, Nanocrystalline Materials. Cambridge, CISP, (2004).
Google Scholar
[3]
W. Luo, K. Su, K. Li, Q. Li, Connection between nanostructured materials' size-dependent melting and thermodynamic properties of bulk materials, Solid State Commun. 151 (2011) 229–233.
DOI: 10.1016/j.ssc.2010.11.025
Google Scholar
[4]
Ph. Buffat, P. Borel, Size effect on the melting temperature of gold particles, Phys. Rev. A. 13 (1976) 2287–2298.
DOI: 10.1103/physreva.13.2287
Google Scholar
[5]
N.P. Young, M.A. van Huis, H.W. Zandbergen, et al., Transformations of gold nanoparticles investigated using variable temperature high-resolution transmission electron microscopy, Ultramicroscopy. 110 (2010) 506–516.
DOI: 10.1016/j.ultramic.2009.12.010
Google Scholar
[6]
J. Sun, S.L. Simon, The melting behavior of aluminum nanoparticles, Thermochim. Acta. 463 (2007) 32–40.
Google Scholar
[7]
J. Mu, Z.W. Zhu, H.F. Zhang, et al., Size dependent melting behaviors of nanocrystalline in particles embedded in amorphous matrix, J. Appl. Phys. 111 (2012) 043515 (1–4).
DOI: 10.1063/1.3686624
Google Scholar
[8]
A.F. Lopeandia, J. Rodr´ıguez-Viejo, Size-dependent melting and supercooling of Ge nanoparticles embedded in a SiO2 thin film, Thermochim. Acta. 461 (2007) 82–87.
DOI: 10.1016/j.tca.2007.04.010
Google Scholar
[9]
C. Zou, Y. Gao, B. Yang, Q. Zhai, Size-dependent melting properties of Sn nanoparticles by chemical reduction synthesis, Trans. Nonferrous Met. Soc. China. 20 (2010) 248−253.
DOI: 10.1016/s1003-6326(09)60130-8
Google Scholar
[10]
H. Jiang, K. Moon, H. Dong, et al., Size-dependent melting properties of tin nanoparticles, Chem. Phys. Lett. 429 (2006) 492–496.
DOI: 10.1016/j.cplett.2006.08.027
Google Scholar
[11]
O.A. Yeshchenko, I.M. Dmytruk, A.A. Alexeenko, A.M. Dmytruk, Size-dependent melting of spherical copper nanoparticles, Phys. Rev. B. 75 (2007) 085434 (1–6).
DOI: 10.1103/physrevb.75.085434
Google Scholar
[12]
X. Yu, Z. Zhan, The effects of the size of nanocrystalline materials on their thermodynamic and mechanical properties, Nanoscale Res. Lett. 9 (2014) 516 (1–6).
Google Scholar
[13]
F. Gao, Z. Gu, Melting Temperature of Metallic Nanoparticles, in: M. Aliofkhazraei (Ed.) Handbook of Nanoparticles, Springer International Publishing Switzerland, 2016, p.661–690.
DOI: 10.1007/978-3-319-15338-4_6
Google Scholar
[14]
L. T. DeLuca, Nanoenergetic Ingredients to Augment Solid Rocket Propulsion, in: Q-L Yan, G-Q He, P-J Liu, M Gozin (Eds.), Nanomaterials in Rocket Propulsion Systems, Elsevier, Amsterdam, 2018, 592 p.
DOI: 10.1016/b978-0-12-813908-0.00006-x
Google Scholar
[15]
M. Borodachenkova, W. Wen, A. M. de Bastos Pereira, High-Pressure Torsion: Experiments and Modeling, in: M. Cabibbo (Ed.), Severe Plastic Deformation Techniques, IntechOpen, 2017, p.93–112.
DOI: 10.5772/intechopen.69173
Google Scholar
[16]
Yu.F. Ivanov, M.N. Osmonoliev, V.S. Sedoi, et al., Productions of ultra-fine powders and their use in high energetic compositions, Propellants, Explos. Pyrotech. 28 (2003) 319–333.
DOI: 10.1002/prep.200300019
Google Scholar
[17]
CRC Handbook of Chemistry and Physics, 82nd Edition (Ed. David R. Lide), CRC Press, Boca Raton FL, (2002).
DOI: 10.1021/ja0048230
Google Scholar
[18]
B. Hallstedt, D. Risold, L.J. Gauckler. Thermodynamic Assessment of the Copper-Oxygen System, J. Phase Equilib. 15 (1994) 483–499.
DOI: 10.1007/bf02649399
Google Scholar