[1]
V.I. Ostrovskii, A.I. Khazanova, I.Ya. Maleiko, Metody issledovanija shlifova'lnoj poverhnosti, Abrasivi, NIIMASH. 2 (1967) 41-47.
Google Scholar
[2]
V.I. Ostrovskii, O fiziko-himicheckih processah pri shlifovanii titanovyh splavov, Abrasivi. 1 (1967) 9 –15.
Google Scholar
[3]
G.I. Sayutin, Issledovanija kachestva shlifovannoj poverhnosti v zavisimosti ot harakteristiki i zatuplenija shlifoval'nyh krugov, Author's abstract. Dissertation. Kiev, (1967).
Google Scholar
[4]
G.I. Sayutin, V.A. Nosenko, Study of Microchemical Changes in Titanium Alloy Surfaces during Grinding, Trenie i Iznos. 4(2) (1983) 348-352.
Google Scholar
[5]
G.I. Sayutin, V.A. Nosenko, N.F. Larionov, Transfer of Silicon to the Metal Surface during Grinding by Wheels and Microscratching by Indentors Made out of Silicon Carbide. Trenie i Iznos. 5(3) (1984) 513-519.
Google Scholar
[6]
G.I. Sayutin, V.A. Nosenko, Shlifovanie detalej iz splavov na osnove titana, Mechanical Engineering, Moscow, (1987).
Google Scholar
[7]
V.A. Nosenko, Shlifovanie adgezionno aktivnyh metallov. Mechanical Engineering, Moscow, (2000).
Google Scholar
[8]
V.A. Nosenko, Interaction intensity criterion for machined and abrasive materials in grinding, Problemy Mashinostraeniya i Nadezhnos'ti Mashin. 5 (2001) 85-91. DOI: 10.1134.
Google Scholar
[9]
V.A. Nosenko, On contact interaction intensity of d-transition metals with silicon carbide in grinding, Problemy Mashinostraeniya i Nadezhnos'ti Mashin. 5 (2002) 78-84. DOI: 10.1134.
Google Scholar
[10]
V.A. Nosenko, Contact interaction effect on abrasive tool wear in grinding, Problemy Mashinostraeniya i Nadezhnos'ti Mashin. 1 (2005) 73-77. DOI: 10.1134.
Google Scholar
[11]
S.V. Nosenko, V.A. Nosenko, L.L. Kremenetskii, Influence of dressing of the wheel on the surface quality of titanium alloy in deep grinding, Russian Engineering Research. 34 (10) (2014) 632-636.
DOI: 10.3103/s1068798x14100128
Google Scholar
[12]
S.V. Nosenko, V.A. Nosenko, A.A. Krutikova, L.L. Kremenetskii, Surface-layer composition of titanium alloy after dry grinding by a silicon-carbide wheel, Russian Engineering Research. 35(7) (2015) 554-557.
DOI: 10.3103/s1068798x15070163
Google Scholar
[13]
S.V. Nosenko, V.A. Nosenko, L.L. Kremenetskii, Concentration gradients in the surface layer of titanium alloy ground by a silicon-carbide wheel Russian Engineering Research. 36 (1) (2016) 43-45.
DOI: 10.3103/s1068798x16010160
Google Scholar
[14]
S.V. Nosenko, V.A. Nosenko, L.L. Kremenetskii, The Condition of Machined Surface of Titanium Alloy in Dry Grinding. Procedia Engineering. 206 (2017) 115-120.
DOI: 10.1016/j.proeng.2017.10.446
Google Scholar
[15]
V.A. Nosenko, A.V. Fetisov, S.V. Nosenko, V.O. Kharlamov, Intensity of contact interaction and material transfer during grinding and microscratching of refractory metals. Naukoemkie tehnologii v mashinostroenii. 10 (2017) 9-18.
DOI: 10.12737/article_59d496eb7ba532.91441180
Google Scholar
[16]
S.V. Nosenko, V.A. Nosenko, A.A. Koryazhkin, The effect of the operating speed and wheel characteristics on the surface quality at creep-feed grinding titanium alloys, Solid State Phenomena. 284 (2018) SSP:369-374.
DOI: 10.4028/www.scientific.net/ssp.284.369
Google Scholar
[17]
V.A. Nosenko, A.V. Fetisov, V.Y. Puzyrkova, Morphology and chemical composition of silicon carbide surfaces interacting with iron, cobalt, and nickel in microscratching, Solid State Phenomena. 284 (2018) SSP:363-368.
DOI: 10.4028/www.scientific.net/ssp.284.363
Google Scholar
[18]
V.A. Nosenko, R.A. Beluhin, A.V. Fetisov, L.K. Morozova, Testing complex based on a precision CNC profile grinder mod. Smart-B1224 III. Izvestia VSTU. (2016) 5 (184):35-39.
Google Scholar
[19]
A.G. Suslov, Technologist reference. Innovatsionnoe mashinostroenie, Moscow, (2019).
Google Scholar
[20]
D.S. Rechenko, High-speed grinding of titanium and heat resistant alloys, Omskii nauchnyi vestnik. 4 (2008) 59-61.
Google Scholar
[21]
D.N. Klauch, A.N. Ovseenko, G.G. Ovumyan, M.E. Kutsheva, N.N. Tshegolkov, A.A. Kudinov, Technological methods for improving the quality of production and the service life of turbine blades. Vestnik MGTU. 4 (2008) 49-53. DOI: 10.18503.
Google Scholar
[22]
D.G. Fyodorov, D.L. Skuratov, An experimental study of the surface quality and cutting forces during flat grinding of titanium alloy, VT6. Vestnik SGAU. 3 (2014) 400-408.
Google Scholar
[23]
V.A. Nosenko, S.V. Nosenko, V.K. Zhukov, A.A. Vasilev, Deep Grinding of Incomplete-Cycle Surfaces, With Periodic Straightening of the Wheel. Russian Engineering Research. 5 (2008) 442-449.
DOI: 10.3103/s1068798x08050109
Google Scholar
[24]
V.F. Makarov, A.Kh. Sakaev, Profile depth grinding of turbine blades on a CNC machine with continuous wheel dressing, Vestnik UGATU. 4 (2012) 52-58.
Google Scholar
[25]
V.A. Poletaev, E.V. Tsvetkov, The quality og the compressor blades surface made of titanium with multi-axis deep grinding. Naukoemkie tehnologii v mashinostroenii. 12 (2017) 15-19.
Google Scholar
[26]
S.V. Nosenko, V.A. Nosenko, A.A. Bairamov, Factors affecting the surface roughness in the deep grinding of titanium alloys, Russian Engineering Research. 7 (2005) 549-553.
DOI: 10.3103/s1068798x15070151
Google Scholar
[27]
V.A. Nosenko, S.V. Nosenko, Flat deep grinding of grooves in titanium alloy blanks with continuous dressing of the grinding wheel. Vestnik mashinostroeniya. 4 (2013) 74-79.
DOI: 10.3103/s1068798x10110110
Google Scholar
[28]
G.I. Sayutin, V.A. Nosenko, N.I. Bogomolov, Tool and coolant choose during grinding of titanium alloys, Stanki I instrument. 11 (1981) 15-17.
Google Scholar
[29]
V.A. Nosenko, Improvement of abrasive tools on vinyl resin binder, Problemy Mashinostraeniya i Nadezhnos'ti Mashin. 3 (2004) 85-90. DOI: 10.1134.
Google Scholar
[30]
V.A. Nosenko, A.P. Mitrofanov, G.M. Butov, Impregnation of Abrasive Tools with Foaming Agents, Russian Engineering Research. 11 (2011) 1160-1163.
DOI: 10.3103/s1068798x11110189
Google Scholar
[31]
V.K. Ermolaev, Development of cooling supply technology during grinding, RITM mashinostroeniya. 7 (2019) 12-18.
Google Scholar