[1]
Severe plastic deformation techniques, M. Cabibbo (Ed.), IntechOpen, Croatia, 2017. 224 p.
Google Scholar
[2]
Yu.F. Ivanov, M.N. Osmonoliev, V.S. Sedoi, et al, Productions of ultra-fine powders and their use in high energetic compositions, Propellants, Explos. Pyrotech. 28 (2003) 319–333.
DOI: 10.1002/prep.200300019
Google Scholar
[3]
C. Poole, F. Owens, Introduction to nanotechnology, Wiley-Interscience, NJ, 2003, 400 p.
Google Scholar
[4]
P. V. Bozhko, A. V. Korshunov, A. P. Il'In, et al, Reactivity of submicrocrystalline titanium: II. Electrochemical properties and corrosion stability in sulfuric acid solutions, Inorg. Mater. Appl. Res. 4 (2013) 85–91.
DOI: 10.1134/s2075113313020032
Google Scholar
[5]
Yu. P. Sharkeev, A. Yu. Eroshenko, V. I. Danilov, et al, Microstructure and mechanical properties of nanostructured and ultrafine-grained titanium and the zirconium formed by the method of severe plastic deformation, Russ. Phys. J. 56 (2014) 1156–1162.
DOI: 10.1007/s11182-014-0156-3
Google Scholar
[6]
J. L. Murray, H. A. Wriedt, The O–Ti (oxygen-titanium) system, Bulletin of Alloy Phase Diagrams 8 (1987) 148–165.
Google Scholar
[7]
J. A. Hedvall, On the reactivity of solid phases, J. Phys. Chem. 28 (1924) 1316–1330.
Google Scholar
[8]
P. Kofstad, High-temperature oxidation of titanium, J. Less-Common Metals 12 (1967) 449–464.
DOI: 10.1016/0022-5088(67)90017-3
Google Scholar
[9]
R.J. Contieri, M. Zanotello, R. Caram, Recrystallization and grain growth in highly cold worked CP-Titanium, Mater. Sci. Eng. A 527 (2010) 3994–4000.
DOI: 10.1016/j.msea.2010.03.023
Google Scholar
[10]
T. Kubina, J. Dlouhý, M. Köver, M. Dománková, J. Hodek, Preparation and thermal stability of ultra-fine and nano-grained commercially pure titanium wires using conform equipment, Mater. Technol. 49 (2015) 213–217.
DOI: 10.17222/mit.2013.226
Google Scholar
[11]
H. Zhang, J. F. Banfield, Kinetics of crystallization and crystal growth of nanocrystalline anatase in nanometer-sized amorphous titania, Chem. Mater. 1 (2002) 4145-4154.
DOI: 10.1021/cm020072k
Google Scholar
[12]
N. Wetchakun, B. Incessungvorn, K. Wetchakun, S. Phanichphant, Influence of calcination temperature on anatase to rutile phase transformation in TiO2 nanoparticles synthesized by the modified sol-gel method, Mater. Lett. 82 (2012) 195–198.
DOI: 10.1016/j.matlet.2012.05.092
Google Scholar
[13]
D. Hanaor, C. Sorrell, Review of the anatase to rutile phase transformation, J. Mater. Sci. 46 (2011) 855–874.
DOI: 10.1007/s10853-010-5113-0
Google Scholar
[14]
E. Gemelli, N. Camargo, Oxidation kinetics of commercially pure titanium, Revista Matéria 12 (2007) 525–531.
DOI: 10.1590/s1517-70762007000300014
Google Scholar
[15]
A. V. Korshunov, A. P. Ilyin, Oxidation of copper nanopowders on heating in air, Russ. J. Appl. Chem. 82 (2009) 1164–1171.
DOI: 10.1134/s1070427209070039
Google Scholar
[16]
O. Kubaschewski, B. E. Hopkins, Oxidation of metals and alloys, 2nd ed., Butterworths, 1962, 319 p.
Google Scholar
[17]
E. A. Gulbransen, K. F. Andrew, F. A. Brassart, Oxidation of molybdenum 550° to 1700 °C, J. Electrochem. Soc. 110 (1963) 952–959.
DOI: 10.1149/1.2425918
Google Scholar
[18]
T. Sun, L. Xu, S. Wei, et al, Phase evolution of hydrothermal synthesis oxide-doped molybdenum powders, Int. J. Refract. Hard Met. 86 (2020) 1050853 (1–12).
Google Scholar