Research of Properties of Austenitic Steels

Article Preview

Abstract:

Active development of the territories of Siberia and the Far East requires the use of materials that are able to work under the combined influence of low temperatures and a complex state. When operating equipment parts at low temperatures, it is necessary to take into account the impact of static and dynamic loads, as well as the influence of an external aggressive environment. The paper studies corrosion-resistant cold-resistant metastable austenitic steels, which are widely used for manufacturing parts of low-temperature equipment. Tests were performed to assess the strength and ductility characteristics of smooth samples and samples with annular notches for static stretching in the temperature range from 293 to 77 K.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

242-246

Citation:

Online since:

May 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Yu.P. Soltsev, T.I. Titova, Steels for the North and Siberia, Himizdat, St. Petersburg, (2008).

Google Scholar

[2] Yu.P. Soltsev, B.S. Ermakov, O.I. Sleptsov, Materials for low and cryogenic temperatures: Encyclopedic reference, Himizdat, St. Petersburg, (2008).

Google Scholar

[3] S.A. Vologzhanina, B.S. Ermakov, A.A. Peregudov, Research of Properties of Cast Austenitic Steels for Low-temperature Equipment, IOP Conference Series: Earth and Environmental Science. 6(459), (2020) 062118.

DOI: 10.1088/1755-1315/459/6/062118

Google Scholar

[4] V.V. Mockvichev, N.A. Mahutov, A.P. Chernyaev, Crack resistance and mechanical properties of structural materials of technical systems, Science, Novosibirsk, (2002).

Google Scholar

[5] B.S. Ermakov, S.A. Vologzhanina, I.N. Bobrovskij, N.M. Bobrovskij, Y. Erisov, Resistance to brittle fracture and availability of austenitic steels, IOP Conference Series: Materials Science and Engineering. 3 (450), (2018) 032041.

DOI: 10.1088/1757-899x/450/3/032041

Google Scholar

[6] Yu.P. Soltsev, B.S. Ermakov, Vologzhanina S.A., Krutikov N.V., The problem of resource exhaustion of cryogenic objects, Journal International Academy of Refrigeration. 2 (2005) 31-33.

Google Scholar

[7] M.Yu. Matrosov, V.N. Zikeev, P.G. Martynov, E.V. Shulga, V.S. Nikitin, V.N. Polovinkin, Yu.A. Simonov, A.A. Semin, Development of advanced patterns of cryogenic steels for gas vessels and stationary storage tanks of liquefied natural gas designed for Arctic conditions, Arctic: Ecology and Economy. 4 (24) (2016) 80-89.

Google Scholar

[8] V.I. Gorynin, M.I. Olenin, Puti povysheniya khladostoykosti stali i svarnykh soyedineniy. SPb.: Izd-vo FGUP TsNII KM «Prometey», 2017. 341 s. (rus.).

Google Scholar

[9] V.I. Gorynin, S.Iu. Kondratyev, M.I. Olenin, V.V. Rogozhkin, The concept of carbide designing of steels with improved cold resistance, Metallovedeniye i termicheskaya obrabotka metallov. 10(712) (2014) 32–38.

Google Scholar

[10] V.I. Gorynin, S.Iu. Kondratyev, M.I. Olenin, Raising the Resistance of Pearlitic and Martensitic Steels to Brittle Fracture Under Thermal Action on the Morphology of the Carbide Phase, Metallovedeniye i termicheskaya obrabotka metallov. 10(700) (2013) 22–29. (rus.).

DOI: 10.1007/s11041-014-9666-4

Google Scholar

[11] V.V. Rybin, V.A. Malyshevskiy, E.I. Khlusova, Structure and the properties of cold-resistant steels for the constructions of Northern design, Scientific and technical journal Voprosy Materialovedeniya,, Materials Science Issues. 1(45) (2006) 24-44.

Google Scholar

[12] O.V. Sych, Scientific and technological bases for creation of cold-resistant steel with a guaranteed yield strength of 315-750 MPa for the Arctic, Part 2, Technology of production, structure and properties of sheet hire performance. Scientific and technical journal Voprosy Materialovedeniya,, Materials Science Issues. 4 (96) (2018) 14-41.

DOI: 10.22349/1994-6716-2018-96-4-14-41

Google Scholar

[13] V.V. Orlov, V.A. Malyshevskii, E.I. Khlusova, S.A. Golosienko, Production technology for arctic pipeline and marine steel, Steel in Translation. 9 (44) (2014) 696-705.

DOI: 10.3103/s0967091214090113

Google Scholar

[14] O.A. Bannykh, I.O. Bannykh, E.I. Lukin, A.M. Sorokin, Structure and mechanical properties of high-strength structural steels, Russian metallurgy (Metally). 6 (2018) 528-532.

DOI: 10.1134/s0036029518060046

Google Scholar

[15] A.A. Peregudov, S.A. Vologzhanina, A.F. Igolkin, Strength of structural elements with cracks, IOP Conference Series: Materials Science and Engineering. 1 (826) (2020) 012015.

DOI: 10.1088/1757-899x/826/1/012015

Google Scholar

[16] S.Y. Shin, B. Hwang, S. Lee, N.J. Kim, S.S. Ahn, Mater. Sci. Eng. A 458, 281 (2007).

Google Scholar

[17] R.V. Sundeev, A.M. Glezer, Mater. & Design. 135 (2017) 77.

Google Scholar

[18] A.M. Glezer, I.A. Timshin. J. Alloys & Comp. 744 (2018) 791.

Google Scholar

[19] A. Hedayati, A. Najafizadeh, A. Kermanpur and F. Forouzan, The effect of cold rolling regime on microstructure and mechanical properties of AISI 304L stainless steel, Journal of Materials Processing Technology. 210 (2010) 1017–1022.

DOI: 10.1016/j.jmatprotec.2010.02.010

Google Scholar

[20] V.V. Sagaradze, A.I. Uvarov, Hardening and properties of austenitic steels. Editorial and publishing Department of the Ural branch of the Russian Academy of Sciences, Ekaterinburg, (2013).

Google Scholar

[21] R. A. Ibragimov, E. V. Korolev, T. R. Deberdeev, V. V. Leksin, D. B. Solovev, Energy Parameters of the Binder during Activation in the Vortex Layer Apparatus, Materials Science Forum, Vol. 945 (2019) 98-103. [Online]. Available: https://doi.org/10.4028/www.scientific.net/MSF.945.98.

DOI: 10.4028/www.scientific.net/msf.945.98

Google Scholar