Generalized Susceptibility of Mixed Dislocation in Ferroelastics near Structural Phase Transition

Article Preview

Abstract:

Bending vibrations of a mixed dislocation in ferroelastics near structural phase transition were considered. It was assumed that the dislocation line performs small bending vibrations near equilibrium position. Complete system of equations describing the vibrations of a mixed dislocation near the structural phase transition is written. Based on these set of equations describing the vibrations of a crystal with a dislocation near the structural phase transition, written equations for dynamics of the mixed dislocation in linear approximation of dislocation displacement. Fourier transform of these equations is satisfied. Expression for Peach-Kohler force acting on the dislocation is obtained, and linear response function (generalized susceptibility) of the mixed dislocation in ferroelastics is found.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

610-615

Citation:

Online since:

May 2021

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.D. Bruce, R.A. Cowley, Structural Phase Transition, Taylor & Francis, London, (1981).

Google Scholar

[2] E.K.H. Salje, Phase Transitions in Ferroelastic and Co-elastic Crystals, Cambridge University Press, Cambridge, (1990).

Google Scholar

[3] V.K. Wadhawan, Introduction to Ferroic Materials, CRC Press, Boca Raton, (2000).

Google Scholar

[4] E.K.H. Salje, Ferroelastic materials, Annual Review of Materials Research. 42 (2012) 265-283.

Google Scholar

[5] L.D. Landau, E.M. Lifshtz, Course of Theoretical Physics, Vol 5, Statistical Physics Part 1, Butterworth-Heinemann, Oxford, (1980).

Google Scholar

[6] V.L. Ginzburg, A.P. Levanyuk, A.A. Sobyanin, Comments on the region of applicability of the Landau theory for structural phase transitions, Ferroelectrics. 73 (1987) 171-182.

DOI: 10.1080/00150198708227916

Google Scholar

[7] A.P. Levanyuk, A.S. Sigov, Defects and Structural Phase Transitions, Gordon and Breach Science Publishers, New York, (1988).

Google Scholar

[8] A.P. Levanyuk, V.V. Osipov, A.S. Sigov, A.A. Sobyanin, Change of defect structure and the resultant anomalies in the properties of substances near phase-transition points, Sov. Phys. JETP. 49 (1979) 176-188.

Google Scholar

[9] I.M. Dubrovskii, M.A. Krivoglaz, Phase transitions of the second kind in crystals containing dislocations, Sov. Phys. JETP. 50 (1979) 512-520.

Google Scholar

[10] A.P. Levanyuk, A.S. Sigov, A.A. Sobyanin, The influence of defects on the properties of solids near phase transition points, Ferroelectrics. 24 (1980) 61-66.

DOI: 10.1080/00150198008238623

Google Scholar

[11] M.V. Belousov, B.E. Volf, The effect of dislocations on the phase transition and scattering of light near the phase transition in a NH4Br crystal, Sov. Phys. JETP Lett. 31 (1980) 317-321.

Google Scholar

[12] V.I. Alshitz, M.D. Mitlyanskii, Interaction of moving dislocation with a soft phonon mode in a displacement-type phase transition, Sov. Phys. JETP. 51 (1980) 1042-1044.

Google Scholar

[13] A.P. Levanyuk, N.V. Shchedrina, Anomalies of the phonon drag of dislocations near phase transition points, Sov. Phys. Solid State. 25 (1983) 1338-1341.

Google Scholar

[14] Yu.M. Kishinets, A.P. Levanyuk, A.S. Sigov, Dislocation contribution to the anomalies of physical properties of crystals near the points of structural phase transition, Sov. Phys. Crystallogr. 30 (1985) 487-490.

Google Scholar

[15] A.E. Koshelev, Dislocations and structural phase transitions involving an increase in the elementary cell, Sov. Phys. JETP. 64 (1986) 1099-1104.

Google Scholar

[16] Yu.M. Kishinetz, A.P. Levanyuk, A.I. Morosov, A.S. Sigov, Dislocatioj-induced anomalies of physical properties of crystals near structural phase transition, Ferroelectrics. 79 (1988) 27-30.

DOI: 10.1080/00150198808229391

Google Scholar

[17] V.V. Gorbunov, V.N. Nechaev, Retardation of dislocations by the Cherenkov mechanism in crystals with a soft mode, Soviet Physics Journal. 31 (1988) 1002-1006.

DOI: 10.1007/bf01101171

Google Scholar

[18] A.A. Boulbitch, P.E. Pumpyan, Local phase transition at a moving dislocation, Sov. Phys. Crystallogr. 35 (1990) 156-158.

Google Scholar

[19] A.L. Korzhenevskii, R. Bausch, R. Schmitz, Dynamic instability of dislocations due to nucleation of a new phase, Phys. Rev. E 63 (2001) 056105.

DOI: 10.1103/physreve.63.056105

Google Scholar

[20] A.L. Korzhenevskii, R. Bausch, R. Schmitz, Dislocation drag close to a phase transition, Phys. Rev. B 67 (2003) 100103.

DOI: 10.1103/physrevb.67.100103

Google Scholar

[21] T. Ninomiya, Dislocation vibration and phonon scattering, J. Phys. Soc. Japan. 25 (1968) 830-840.

DOI: 10.1143/jpsj.25.830

Google Scholar

[22] T. Ninomiya, Eigenfrequencies in a dislocated crystal, in: J.A. Simmons, R. de Wit, R. Bullough (Eds.), Fundamental aspects of dislocations theory, Vol 1, US Nat. Bur. Stand. Spec. Publ. 317, Washington, 1970, pp.315-357.

Google Scholar

[23] V.V. Dezhin, V.N. Nechaev, A.M. Roshchupkin, Generalized dislication susceptibility in a crystal with soft mode, Fizika Tverdogo Tela. 32 (1990) 810-817.

Google Scholar

[24] V.V. Dezhin, V.N. Nechaev, A.M. Roshchupkin, Generalized susceptibility of dislocations in ferroelectrics and ferromagnetics, Z. für Kristallographie. 193 (1990) 175-197.

DOI: 10.1524/zkri.1990.193.3-4.175

Google Scholar

[25] I.L. Bataronov, V.V. Dezhin, V.N. Nechaev, Dynamic characteristics of dislocations in soft-mode crystals, Bull. Russian Academy Sciences: Physics. 62 (1998) 1223-1227.

Google Scholar

[26] V.N. Nechaev, V.V. Dezhin, The bending vibrations equation of a screw dislocation in ferroelastic near the phase transition point, Vestnik Tambovskogo Universiteta. Ser.: Estestv. i tehnich. nauki. 21(3) (2016) 1188-1190.

DOI: 10.20310/1810-0198-2016-21-3-1188-1190

Google Scholar

[27] V.V. Dezhin, V.N. Nechaev, Generalized susceptibility of a screw dislocation in ferroelastics near structural phase transition, J. Phys.: Conf. Ser. 1391 (2019) 012161.

DOI: 10.1088/1742-6596/1391/1/012161

Google Scholar

[28] E. Kröner, Der fundamentale Zusammenhang zwischen Versetzungsdichte und Spannungsfunktionen, Z. Phys. 142 (1955) 463-475.

DOI: 10.1007/bf01375082

Google Scholar

[29] L.D. Landau, E.M. Lifshitz, Course of Theoretical Physics, Vol 7, Theory of Elasticity, Butterworth-Heinemann, Oxford, (1986).

Google Scholar

[30] I.L. Bataronov, V.V. Dezhin, On the natural small vibrations of dislocation in an isotropic medium, J. Phys.: Conf. Ser. 936 (2017) 012035.

DOI: 10.1088/1742-6596/936/1/012035

Google Scholar