[1]
G. Kakali, T.H. Perraki, S. Tsivilis, E. Bandoqiannis, Thermal treatments of kaolin the effect of mineralogy on the pozzolanic activity, J.Appl. Clay Sci. 20(1-2) (2001) 73-80.
DOI: 10.1016/s0169-1317(01)00040-0
Google Scholar
[2]
A. Alujas, R. Fernandez, R. Quintana, K.L. Scrivener, F. Martirena, Pozzolanic reactivity of low grade kaolinitic clays: Influence of calcination temperature and impact of calcination products on OPC hydration, J.Appl. Clay Sci. 108 (2015) 94-101.
DOI: 10.1016/j.clay.2015.01.028
Google Scholar
[3]
B.B. Kenne Diffo, A. Elimbi, M. Cyr, I. Dika Manga, H. Tchakonte Konarmo, Effect of the rate of calcinations on kaolin on the properties of metakaolin – based qeopolymers, J. Asian Ceram. Soc. 3(1) (2015) 130-138.
DOI: 10.1016/j.jascer.2014.12.003
Google Scholar
[4]
R. Snellings, G. Mertens, J. Elsen, Supplementary Cementous Materials. Rev. Mineral Geochem. 74 (2012) 211-278.
Google Scholar
[5]
L. Trankam, Neelakantan Thurvas Renganathan, Ideal supplementary cementing material – Metakaolin: A review International review of Applied Sciences and Engineering 11(1) (2020) 58-65.
DOI: 10.1556/1848.2020.00008
Google Scholar
[6]
A. Tironi, M. Trezza, A. Scian, E. Irassar, Assessment of pozzolanic activity of different calcined clay, J. Cement Concrete Comp. 37 (2013) 319-327.
DOI: 10.1016/j.cemconcomp.2013.01.002
Google Scholar
[7]
A. M. Rashad, Metakaolin as cementitious material: History, scours, production and composition – A comprehensive overview, J. Constr. Bild mater. 41 (2013) 303-318.
DOI: 10.1016/j.conbuildmat.2012.12.001
Google Scholar
[8]
B.B. Sabir, S. Wild, J. Bai, Metakaolin and calcined clays as pozzolans for concrete: a review, J. Cement Concrete Comp. 23(6) (2001) 441-454.
DOI: 10.1016/s0958-9465(00)00092-5
Google Scholar
[9]
R. Siddique, J. Klaus, Influence of metakaolin on the properties of mortar and concrete: (a review), J.Appl. Clay Sci. 43(3-4) (2009) 392-400.
DOI: 10.1016/j.clay.2008.11.007
Google Scholar
[10]
M. Shekarchi, A. Bonakdar, M. Bakhshi, A. Mirdamadi, B. Mobasher, Transport properties in metakaolin blended concrete, J. Constr Bild mater. 24(11) (2010) 2217 – 2223.
DOI: 10.1016/j.conbuildmat.2010.04.035
Google Scholar
[11]
S. Salvador, Pozzolanic properties on flash-calcined kaolinite: A comparative study with soak-calcined products, J. Cement concrete Res. 21 (1995) 102-112.
DOI: 10.1016/0008-8846(94)00118-i
Google Scholar
[12]
GOST 19609.13-89 Concentrated kaolin. Method for determination of mass loss on ignition.
Google Scholar
[13]
A. Guatame-Garcia, M. Buxton, Prediction of soluble Al2O3 in calcined kaolin using infrared spectroscopy and multivariate calibration, J. Minerals. 8 (2018) 136.
DOI: 10.3390/min8040136
Google Scholar
[14]
A. Guatame-Garcia, M. Buxton, F. Deon, C. Lievens, G. Hecker, Towards an on-line characterization of kaolin calcinations process using short-wave infrared spectroscopy, J. Miner.Process Extr. Metall Rev. 39 (2018) 420-431.
DOI: 10.1080/08827508.2018.1459617
Google Scholar
[15]
V. Rassulov, R. Platova, Yu. Platov, Quality control of metakaolin by the method of spectroscopy in the near infrared region of spectrum, J. Construction Materials. 5 (2018) 53-56.
DOI: 10.31659/0585-430x-2018-759-5-53-56
Google Scholar
[16]
L. Guatame-Garcia, М. Buxton. Visibs and infrared reflectance spectroscopy for characterization of iron impurities in calcined kaolin clays. Proceeding of the 2nd International conference on optical characterization of materials. Karlsruhe: KIT. (2015) 215 – 226.
Google Scholar
[17]
O. Rodionova, A. Pomeransev, Chemometrics: Achievements and prospects, Russian Chemical Rev. 75(4) (2006) 271-287.
Google Scholar
[18]
ASTM E1655-17 Standard Practices for infrared Multivariate Quantitative Analysis.
Google Scholar
[19]
H. Martens, T. Hӕs, Multivariate calibration. I. Concepts and distinctions, J. Trends in Analytical Chemistry. 3(8) (1984) 204-210.
DOI: 10.1016/0165-9936(84)85008-6
Google Scholar
[20]
Kim H. Esbensen, B. Swarbrick, F. Westad. Multivarite Data Analysis 6-th Ed CAMO Software AS. (2018).
Google Scholar
[21]
Yu.B. Monakhova, S.P. Mushtakova, Methodology of chemometric modeling of spectrometric signals in the analysis of complex samples, J. Analytical Chemistry. 72 (2017) 147-155.
DOI: 10.1134/s1061934816120066
Google Scholar
[22]
R. J. Barnes, M.S. Dhanoa, S.J. Lister, Standard normal variate transformation and De-trending of near – infrared duffuse reflectance spectra, J. Appl Spectros. 43(5) (1989) 772-777.
DOI: 10.1366/0003702894202201
Google Scholar
[23]
I. Berget, T.Hӕs, Using unclassified observations for improving classifiers, J. Chemometrics. 18(2) (2004) 103-111.
DOI: 10.1002/cem.857
Google Scholar
[24]
S. Wold, Cross-validatory estimation of the number of components in factor and principal components models, J. Technometrics. 20(4) (1978) 397-405.
DOI: 10.1080/00401706.1978.10489693
Google Scholar
[25]
H. Khon, O.V. Bashkov, S.V. Zolotareva, D.B. Solovev, Modeling the Propagation of Elastic Ultrasonic Waves in Isotropic and Anisotropic Materials When Excited by Various Sources, Materials Science Forum, Vol. 945 (2019) 926-931. [Online]. Available: https://doi.org/10.4028/www.scientific.net/MSF.945.926.
DOI: 10.4028/www.scientific.net/msf.945.926
Google Scholar