Finite-Element Simulation of Steckel Mill Rolling

Article Preview

Abstract:

In the paper the research has been performed to obtain the stress distribution through the thickness of the rolled products along the deformation zone in the conditions of roughing rolling and in the conditions of quasi-stationary temperature distribution during finishing rolling at the Steckel mill. The research has been performed by the simulation based on the Abaqus CAE 6.14-2 software and analytical modeling of the hot rolling process of coils at the Steckel mill with dimensions of 15 mm × 1500 mm, made of steel grade S355JR+AR, according to the requirements of EN 10025-2. The obtained deviations of the rolling force between simulation, analytical modeling and actual data have comparable results and a similar trend of changes through the passes, the average value of which does not exceed 1.54 % and - 1.77 %. The beginning of the continuous layer formation of equivalent stress during roughing rolling has been determined, and, accordingly, the beginning of the deformation penetration through the entire thickness of the semi-rolled product has been also determined that occurs in the pass 6 when reduction equals 14 %.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

564-574

Citation:

Online since:

May 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V. Artiukh, V. Mazur, E. Pokrovskaya, Influence of Strip Bite Time in Work Rolls Gap on Dynamic Loads in Strip Rolling Stands, MATEC Web of Conferences, 86 (2016) 01030.

DOI: 10.1051/matecconf/20168601030

Google Scholar

[2] V. Artiukh, V. Mazur, R.V. Prakash, Increasing Hot Rolling Mass of Steel Sheet Products, Materials Science Forum, 871 (2016) 3-8.

DOI: 10.4028/www.scientific.net/msf.871.3

Google Scholar

[3] V. Kukhar, E. Balalayeva, A. Prysiazhnyi, O. Vasylevskyi, I. Marchenko, Analysis of relation between edging ratio and deformation work done in pre-forming of workpiece by bulk buckling, MATEC Web of Conferences, 178 (2018) 02003.

DOI: 10.1051/matecconf/201817802003

Google Scholar

[4] V.L. Mazur, V.I. Timoshenko, I.Y. Prikhod'ko, Regulating the Coil Stress by Adjusting the Rigidity of the Winding Drum, Steel in Translation, 48(8) (2018) 528-535.

DOI: 10.3103/s0967091218080090

Google Scholar

[5] J. Kim, J. Lee, S.M. Hwang, An analytical model for the prediction of strip temperatures in hot strip rolling, International journal of heat mass transfer, 52 (2009) 1864-1874.

DOI: 10.1016/j.ijheatmasstransfer.2008.10.013

Google Scholar

[6] O.H. Kurpe, V.V. Kukhar, E.S. Klimov, S.M. Chernenko, Improvement of Process Parameters Calculation for Coil Rolling at the Steckel Mill, Materials Science Forum, 989 (2020) 609-614.

DOI: 10.4028/www.scientific.net/msf.989.609

Google Scholar

[7] O.H. Kurpe, V.V. Kukhar, Development and Optimization of Flat Products Manufacturing at Rolling Mill 3200, Materials Science Forum, 946 (2018) 794-799.

DOI: 10.4028/www.scientific.net/msf.946.794

Google Scholar

[8] O.S. Anishchenko, V.V. Kukhar, A.V. Grushko, I.V. Vishtak, A.H. Prysiazhnyi, E.Yu. Balalayeva, Analysis of the sheet shell's survature with Lame's superellipse method during superplastic forming, Materials Science Forum, 945 (2019) 531-537.

DOI: 10.4028/www.scientific.net/msf.945.531

Google Scholar

[9] A. Anishchenko, V. Kukhar, V. Artiukh, O. Arkhipova, Application of G. Lame's and J. Gielis' formulas for description of shells superplastic forming, MATEC Web of Conferences, 239 (2018) 06007.

DOI: 10.1051/matecconf/201823906007

Google Scholar

[10] V. Artiukh, V. Kukhar, E. Balalayeva, Refinement issue of displaced volume at upsetting of cylindrical workpiece by radial dies, MATEC Web of Conferences, 224 (2018) 01036.

DOI: 10.1051/matecconf/201822401036

Google Scholar

[11] Y. Xu, Y. Yu, X. Liu, G. Wang, Modeling of microstructure evolution and mechanical properties during hot-strip rolling of Nb steels, Journal of University of Science and Technology, Beijing, 15 (2008) 396-401.

DOI: 10.1016/s1005-8850(08)60075-4

Google Scholar

[12] F. Schausberger, A. Steinboeck, A. Kugi, Mathematical modeling of the contour evolution of heavy plates in hot rolling, Applied Mathematical Modelling, 39 (2015) 4534-4547.

DOI: 10.1016/j.apm.2015.01.017

Google Scholar

[13] Quan-Ke Pan, Qing-da Chen, Tao Meng, Bing Wang, Liang Gao, A mathematical model and two-stage heuristic for hot rolling scheduling in compact strip production, Applied Mathematical Modelling, 48 (2017) 516-533.

DOI: 10.1016/j.apm.2017.03.067

Google Scholar

[14] N. Rudkins, P. Evans, Mathematical modelling of mill set-up in hot strip rolling of high strength steels, Journal of Materials Processing Technology, 80-81 (1998) 320-324.

DOI: 10.1016/s0924-0136(98)00190-3

Google Scholar

[15] A. Ettl, K. Prinz, M. Mueller, A. Steinboeck, Mathematical Model and Stability Analysis of the Lateral Plate Motion in a Reversing Rolling Mill Stand, IFAC-PapersOnLine, 51(2) (2018) 73-78.

DOI: 10.1016/j.ifacol.2018.03.013

Google Scholar

[16] M.P. Phaniraj, B.B. Behera, A.K. Lahiri, Thermo-mechanical modeling of two phase rolling and microstructure evolution in the hot strip mill Part I. Prediction of rolling loads and finish rolling temperature, Journal of Materials Processing Technology, 170 (2005) 323-335.

DOI: 10.1016/j.jmatprotec.2005.05.009

Google Scholar

[17] G.A. Orlov, A.G. Orlov, Simulation of Roller-Type Cold Rolling of Tubes. Metallurgist, 62(9-10) (2019) 857-863.

DOI: 10.1007/s11015-019-00746-6

Google Scholar

[18] F. Jamal, S. Rath, B. Acherjee, Process modelling of flat rolling of steel, Advances in Materials and Processing Technologies, 5(1) (2018) 1–10.

DOI: 10.1080/2374068x.2018.1526471

Google Scholar

[19] O.E. Markov, O.V. Gerasimenko, A.A. Shapoval, O.R. Abdulov, R.U. Zhytnikov, Computerized simulation of shortened ingots with a controlled crystallization for manufacturing of high-quality forgings, International Journal of Advanced Manufacturing Technology, 103(5-8) (2019) 3057-3065.

DOI: 10.1007/s00170-019-03749-4

Google Scholar

[20] D. Weisz-Patrault, Coupled heat conduction and multiphase change problem accounting for thermal contact resistance,International Journal of Heat and Mass Transfer, (2017) 595-606.

DOI: 10.1016/j.ijheatmasstransfer.2016.08.091

Google Scholar

[21] D. Weisz-Patrault, A. Ehrlacher, N. Legrand. Temperature and heat flux fast estimation during rolling process, International Journal of Thermal Sciences, (2014) 1-20.

DOI: 10.1016/j.ijthermalsci.2013.07.010

Google Scholar

[22] D. Weisz-Patrault, Inverse three-dimensional method for fast evaluation of temperature and heat flux fields during rolling process, Symposium on Modelling of Rolling Processes, France, (2012) 20-22.

Google Scholar

[23] V.G. Efremenko, V.I. Zurnadzhi, Y.G. Chabak, O.V. Tsvetkova, A.V. Dzherenova, Application of the Q-n-P-Treatment for Increasing the Wear Resistance of Low-Alloy Steel with 0.75% C, Material Science, 53 (2017) 67-75.

DOI: 10.1007/s11003-017-0045-3

Google Scholar

[24] A. Anishchenko, V. Kukhar, V. Artiukh, O. Arkhipova, Superplastic forming of shells from sheet blanks with thermally unstable coatings, MATEC Web of Conferences, 239 (2018) 06006.

DOI: 10.1051/matecconf/201823906006

Google Scholar

[25] V. Tarelnyk, V. Martsynkovskyy, O. Gaponova, I. Konoplianchenko, M. Dovzyk, N. Tarelnyk, S. Gorovoy, New sulphiding method for steel and cast iron parts, IOP Conference Series: Materials Science and Engineering, 233 (2017) 012049.

DOI: 10.1088/1757-899x/233/1/012049

Google Scholar

[26] Z. Shao, Z. Wang, Z. Li, S. Wang, J. Wang, Effect of thermomechanical processing on the microstructure and mechanical properties of low carbon steel, Proc. of the 5th International conference on advanced design and manufacturing engineering (ICADME 2015), Advances in Engineering Research, Shenzhen, China, (2015) 1984-1989.

DOI: 10.2991/icadme-15.2015.367

Google Scholar

[27] V.A. Fedorinov, A.V. Satonin, E.P. Gribkov, Matematicheskoe modelirovanie naprjazhenij, deformacij i osnovnyh pokazatelej kachestva pri prokatke otnositel'no shirokih listov i polos (Mathematical modeling of stresses, strains and basic quality indicies at rolling relatively wide sheets and strips), Kramatorsk, DGMA, (2010) 244 p. (in Russian).

Google Scholar

[28] Ju.V. Konovalov, A.L. Ostapenko, V.I. Ponomarev, Raschet parametrov listovoj prokatki (Calculation of sheet rolling parameters), Moscow, Metallurgy, (1986) 430. (in Russian).

Google Scholar

[29] A.V. Karpenko, D.V. Karpenko, D.B. Solovev, Influence of Crumb Rubber Vulcanization Degree on the Quality of Asphalt Concrete Used in Road Construction, Materials Science Forum, Vol. 992 (2020) 31-35. [Online]. Available: https://doi.org/10.4028/www.scientific.net/MSF.992.31.

DOI: 10.4028/www.scientific.net/msf.992.31

Google Scholar