[1]
Y.B. Zeldovich, G.I. Barenblatt, V.B. Librovich, G.M. Makhviladze, Mathematical theory of Combustion and Explosion. Moscow, Nauka, 1980, 478 p. (in Russian).
Google Scholar
[2]
J.D. Buckmaster &G.S.S. Ludford, Theory of Laminar Flames, Cambridge University Press 1982, 265 p.
Google Scholar
[3]
D.A. Frank-Kamenetskii, Diffusion and Heat transfer in Chemical Kinetics, Moscow, Nauka, 1987, 483 p. (in Russian).
Google Scholar
[4]
L.D. Landau, E.M. Lifshits, Hydrodynamics, vol. VI. Theoretical Physics, Moscow, Nauka 1986, 733 p. (in Russian).
Google Scholar
[5]
A.G. Merzhanov, Tverdoplamennoe gorenie, Chernogolovka, ISMAN, 2000, 238 p. (in Russian).
Google Scholar
[6]
S.D. Dunmead, D.W. Readey, C.E. Semler, J.B. Hol, Kinetics of Combustion Synthesis in Ti-C and Ti-C-Ni Systems, J. American Ceramic Society. vol. 72, issue 12 (1989) 2318-2324.
DOI: 10.1111/j.1151-2916.1989.tb06083.x
Google Scholar
[7]
T.P. Ivleva, A.G. Merzhanov, K.G. Shkadinskii, A mathematical model of spin burning, Dokl. Akad. Nauk SSSR. Vol. 239, Number 5 (1978) 1086– 1088.
Google Scholar
[8]
A.G. Strunina, A.V. Dvoryankin, Effect of heat factors on regularities of the unstable combustion of termite systems, Dokl. Akad. Nauk SSSR. vol. 260, 5 (1981) 1185-1188.
Google Scholar
[9]
A.V. Dvoryankin, A.G. Strunina, A.G. Merzhanov, Trends in the spin combustion of termites Combustion, Explosion and Shock Waves. vol. 18 (1982) 134–139.
DOI: 10.1007/bf00789607
Google Scholar
[10]
B.V. Novozhilov, The theory of surface spin combustion Pure& Appl. Chem. vol. 65 (1993) 309-316.
Google Scholar
[11]
B.V. Novozhilov, Quasistationary theory of spiral combustion regime, Internat. J. SHS. vol. 2, 3 (1993) 207-213.
Google Scholar
[12]
I.A. Filimonov, N.I. Kidin, A.S. Mukasyan, The effect of infiltration and reactant gas pressure on spin combustion in a gas-solid system. Proc. of the Combustion Institute, vol. 28 (2000) 1421-1429.
DOI: 10.1016/s0082-0784(00)80358-6
Google Scholar
[13]
T.-Yu. Liu, A.N. Campbell, A.N. Hayhurst, S.S. Cardoso, Combustion and Flame. 157 (2010) 230–239.
Google Scholar
[14]
T.-Yu. Liu, A.N. Campbell, A.N. Hayhurst, S.S. Cardoso, Phys. Chem. Chem. Phys. 10 (2008) 5521–5530.
Google Scholar
[15]
V.Y. Filimonov, Combustion theory and Modeling, (2015). http://dx.doi.org/10.180/13647830.(2015).
Google Scholar
[16]
V.Y. Filimonov, Combustion and Flame. 161 (2014) 1172–1179.
Google Scholar
[17]
V.Y. Filimonov, K.B. Koshelev, Propellants, Explosives, Pyrotechnics (2019),.
Google Scholar
[18]
M. Loginova, et.al. J. Synchrotron Rad. 26 (2019) 1671–1678.
Google Scholar
[19]
V. Novozhilov, Effects of initial and boundary conditions on thermal explosion development AIP Conference Proceedings. 1798 (2017) 020114. https://doi.org/10.1063/1.4972706.
DOI: 10.1063/1.4972706
Google Scholar
[20]
Kai Chen, Karen S. Martirosyan and Dan Luss. Hot Zones Formation During Regeneration of Diesel Particulate Filters. AIChE Journal. vol. 57, 2 (2011) 497-503.
DOI: 10.1002/aic.12266
Google Scholar
[21]
J. Cinert, Study of mechanisms of the Spark plasma Sintering technique PhD thesises, Prague. (2018) 104 p.
Google Scholar
[22]
Kevin Konrad et.al., On the relative motions of long-lived Pasific mantle plums, Nature Communications. vol. 9 (2018) 854.
Google Scholar
[23]
A.A. Markov, I.A. Filimonov and K.S. Martirosyan, Modeling the Synthesis of Submicron-Sized Complex Oxides Theoretical Foundations of Chemical Eng. 51, No. 1 (2017) 27–37.
DOI: 10.1134/s0040579517010134
Google Scholar