[1]
M.S. Dresselhaus, G. Dresselhaus, P. Avouris, Carbon Nanotubes: Synthesis, Structure, Properties, and Application, Berlin/Heidelberg, Germany, (2001).
Google Scholar
[2]
P.N. D'yachkov, Electron Properties and Applications of Nanotubes, Moscow, Russia, (2010).
Google Scholar
[3]
R. Saito, M.S. Dresselhaus, G. Dresselhaus, Physical properties of carbon nanotubes, Imperial College Press, (1999).
Google Scholar
[4]
P.J.F. Harris, Carbon Nanotubes and Related Structures: New Materials of the XXI Century, Moscow, Russia, (2003).
Google Scholar
[5]
A.V. Eletskii, Sorption properties of carbon nanostructures, J. Uspekhi Fizicheskikh Nauk. 47 (2004) 1191.
DOI: 10.3367/ufnr.0174.200411c.1191
Google Scholar
[6]
I.V. Zaporotskova, Carbon and Non-Carbon Nanomaterials and Composite Structures Based on Them: Structure and Electronic Properties, Volgograd, Russia, (2009).
Google Scholar
[7]
K.F. Akhmadichina, I.I. Bobrinetskii, I.A. Komarov, A.M. Malovichko, V.K. Nevolin, A.V. Petukhov, A.V. Golovin, A.O. Zalevskii, The flexible biological sensors based on carbon nanotubular films, Nanotechnologies in Russia, 2013, pp.721-726.
DOI: 10.1134/s1995078013060025
Google Scholar
[8]
W.D. Zhang, W.H. Zhang, Carbon Nanotubes as Active Components for Gas Sensors, J. Sens. 160698 (2009) 16.
Google Scholar
[9]
С. Farrera, A.F. Torres, N. Feliu, Carbon Nanotubes as Optical Sensors in Biomedicine, J. ACS Nano. 11 (2017) 10637-10643.
DOI: 10.1021/acsnano.7b06701
Google Scholar
[10]
J. Casanova-Cháfer, E. Navarrete, X. Noirfalise, P. Umek, C. Bittencourt, E. Llobet, Gas Sensing with Iridium Oxide Nanoparticle Decorated Carbon Nanotubes, J. Sens. 19 (2019) 113.
DOI: 10.3390/s19010113
Google Scholar
[11]
W. Da Silva, M.E. Ghica, C.M.A. Brett, Gold nanoparticle decorated multiwalled carbon nanotube modified electrodes for the electrochemical determination of theophylline, J. Anal. Meth. 10 (2018) 5634–5642.
DOI: 10.1039/c8ay02150c
Google Scholar
[12]
M.A. Salvador, C.P. Sousa, C.D. Maciel, R.N. Gomes, S. Morais, P. de Lima-Neto, M.D. Coutinho-Neto, A.N. Correia, Experimental and computational studies of the interactions between carbon nanotubes and ionic liquids used for detection of acetaminophen. J. Sens. Actuators B Chem. 277 (2018) 640-646.
DOI: 10.1016/j.snb.2018.09.017
Google Scholar
[13]
S. Alim, J. Vejayan, M.M. Yusoff, A.K.M. Kafi, Recent uses of carbon nanotubes & gold nanoparticles in electrochemistry with application in biosensing, J. Biosens. Bioelectron. 121 (2018) 125–136.
DOI: 10.1016/j.bios.2018.08.051
Google Scholar
[14]
I.V. Zaporotskova, N.P. Boroznina, Y.N. Parkhomenko, L.V. Kozhitov, Carbon nanotubes: Sensor properties, J. Mod. Electron. Mater. 2 (2016) 95–105.
DOI: 10.1016/j.moem.2017.02.002
Google Scholar
[15]
D. Fu, Differentiation of gas molecules using flexible and all-carbon nanotube devices, J. Phys. Chem. 112 (2008) 650–653.
Google Scholar
[16]
C.Q. Sun, S.-Y. Fu, Y.G. Nie, Dominance of broken bonds and unpaired nonbonding π-electrons in the band gap expansion and edge states generation in graphene nanoribbons. J. Phys. Chem. 112 (2008) 18927–18934.
DOI: 10.1021/jp807580t
Google Scholar
[17]
I.V. Zaporotskova, N.P. Polikarpova, D.E. Vil'keeva, Sensor Activity of Carbon Nanotubes with a Boundary Functional Group, J. Nanosci. Nanotechnol. 5 (2013) 1169–1173.
DOI: 10.1166/nnl.2013.1704
Google Scholar
[18]
I.V. Zaporotskova, D.E. Vilkeeva, N.P. Polikarpova, D.I. Polikarpov, Sensor properties of carboxylmodified carbon nanotubes. J. Nanosyst. Phys. Chem. 5 (2014) 101–106.
Google Scholar
[19]
T.-H. Tsai, K.-W. Lin, H.-I. Chen, I.-P. Liu, C.-W. Hung, L.-Y. Chen, Y.-Y. Tsai, T.-P. Chen, K.-Y. Chu, W.-C. Liu, Transient response of a transistor-based hydrogen sensor, J. Sens. Actuators B Chem. 129 (2008) 750–754.
DOI: 10.1016/j.snb.2008.06.034
Google Scholar
[20]
I.V. Zaporotskova, N.P. Boroznina, S.V. Boroznin, P.A. Zaporotskov, About Using Carbon Nanotubes with Amino Group Modification as Sensors, J. Nano Electron. Phys. 7 (2015) 04089.
Google Scholar
[21]
I.V. Zaporotskova, L.V. Kozhitov, N.P. Boroznina, Sensor Activity with Respect to Alkali Metals of a Carbon Nanotube Edge-Modified with Amino Group, J. Inorg. Chem. 62 (2017) 1458–1463.
DOI: 10.1134/s0036023617110213
Google Scholar
[22]
M.S. Ribeiro, A.L. Pascoini, W.G. Knupp, I. Camps, Effects of surface functionalization on the electronic and structural properties of carbon nanotubes: A computational approach, J. Appl. Surf. Sci. 426 (2017) 781–787.
DOI: 10.1016/j.apsusc.2017.07.162
Google Scholar
[23]
W. Koch, M.C. Holthausen, A Chemist's Guide to Density Functional Theory, Weinheim, Germany, (2002).
Google Scholar
[24]
I.V. Zaporotskova, N.P. Polikarpova, A.V. Shkodin, D.I. Polikarpov, D.E. Vil'keeva, About boundary modification of nanotube systems by carboxile group, Nanoscience & nanotechnology, 2013, pp.52-53.
Google Scholar
[25]
N.P. Boroznina, I.V. Zaporotskova, S.V. Boroznin, E.S. Dryuchkov, Chemosensors. 7 (2019) 1-7.
DOI: 10.3390/chemosensors7010011
Google Scholar