Investigation of Surface-Functionalized CNT-Based Array for Detection of Acetone Vapors

Article Preview

Abstract:

This article provides a theoretical study of the possibility of reacting acetone, a common volatile organic compound (VOC) in human respiration, with carbon nanotubes modified with functional groups - carboxyl and amine. Analysis of efficiency of processes of sorption interaction of acetone molecule with modified nanosystem for development of recommendations for creation of perspective highly sensitive sensory devices using modified carbon nanotubes for detection of VOCs contained in human exhalation and diagnostics of various diseases.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

581-585

Citation:

Online since:

May 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.S. Dresselhaus, G. Dresselhaus, P. Avouris, Carbon Nanotubes: Synthesis, Structure, Properties, and Application, Berlin/Heidelberg, Germany, (2001).

Google Scholar

[2] P.N. D'yachkov, Electron Properties and Applications of Nanotubes, Moscow, Russia, (2010).

Google Scholar

[3] R. Saito, M.S. Dresselhaus, G. Dresselhaus, Physical properties of carbon nanotubes, Imperial College Press, (1999).

Google Scholar

[4] P.J.F. Harris, Carbon Nanotubes and Related Structures: New Materials of the XXI Century, Moscow, Russia, (2003).

Google Scholar

[5] A.V. Eletskii, Sorption properties of carbon nanostructures, J. Uspekhi Fizicheskikh Nauk. 47 (2004) 1191.

DOI: 10.3367/ufnr.0174.200411c.1191

Google Scholar

[6] I.V. Zaporotskova, Carbon and Non-Carbon Nanomaterials and Composite Structures Based on Them: Structure and Electronic Properties, Volgograd, Russia, (2009).

Google Scholar

[7] K.F. Akhmadichina, I.I. Bobrinetskii, I.A. Komarov, A.M. Malovichko, V.K. Nevolin, A.V. Petukhov, A.V. Golovin, A.O. Zalevskii, The flexible biological sensors based on carbon nanotubular films, Nanotechnologies in Russia, 2013, pp.721-726.

DOI: 10.1134/s1995078013060025

Google Scholar

[8] W.D. Zhang, W.H. Zhang, Carbon Nanotubes as Active Components for Gas Sensors, J. Sens. 160698 (2009) 16.

Google Scholar

[9] С. Farrera, A.F. Torres, N. Feliu, Carbon Nanotubes as Optical Sensors in Biomedicine, J. ACS Nano. 11 (2017) 10637-10643.

DOI: 10.1021/acsnano.7b06701

Google Scholar

[10] J. Casanova-Cháfer, E. Navarrete, X. Noirfalise, P. Umek, C. Bittencourt, E. Llobet, Gas Sensing with Iridium Oxide Nanoparticle Decorated Carbon Nanotubes, J. Sens. 19 (2019) 113.

DOI: 10.3390/s19010113

Google Scholar

[11] W. Da Silva, M.E. Ghica, C.M.A. Brett, Gold nanoparticle decorated multiwalled carbon nanotube modified electrodes for the electrochemical determination of theophylline, J. Anal. Meth. 10 (2018) 5634–5642.

DOI: 10.1039/c8ay02150c

Google Scholar

[12] M.A. Salvador, C.P. Sousa, C.D. Maciel, R.N. Gomes, S. Morais, P. de Lima-Neto, M.D. Coutinho-Neto, A.N. Correia, Experimental and computational studies of the interactions between carbon nanotubes and ionic liquids used for detection of acetaminophen. J. Sens. Actuators B Chem. 277 (2018) 640-646.

DOI: 10.1016/j.snb.2018.09.017

Google Scholar

[13] S. Alim, J. Vejayan, M.M. Yusoff, A.K.M. Kafi, Recent uses of carbon nanotubes & gold nanoparticles in electrochemistry with application in biosensing, J. Biosens. Bioelectron. 121 (2018) 125–136.

DOI: 10.1016/j.bios.2018.08.051

Google Scholar

[14] I.V. Zaporotskova, N.P. Boroznina, Y.N. Parkhomenko, L.V. Kozhitov, Carbon nanotubes: Sensor properties, J. Mod. Electron. Mater. 2 (2016) 95–105.

DOI: 10.1016/j.moem.2017.02.002

Google Scholar

[15] D. Fu, Differentiation of gas molecules using flexible and all-carbon nanotube devices, J. Phys. Chem. 112 (2008) 650–653.

Google Scholar

[16] C.Q. Sun, S.-Y. Fu, Y.G. Nie, Dominance of broken bonds and unpaired nonbonding π-electrons in the band gap expansion and edge states generation in graphene nanoribbons. J. Phys. Chem. 112 (2008) 18927–18934.

DOI: 10.1021/jp807580t

Google Scholar

[17] I.V. Zaporotskova, N.P. Polikarpova, D.E. Vil'keeva, Sensor Activity of Carbon Nanotubes with a Boundary Functional Group, J. Nanosci. Nanotechnol. 5 (2013) 1169–1173.

DOI: 10.1166/nnl.2013.1704

Google Scholar

[18] I.V. Zaporotskova, D.E. Vilkeeva, N.P. Polikarpova, D.I. Polikarpov, Sensor properties of carboxylmodified carbon nanotubes. J. Nanosyst. Phys. Chem. 5 (2014) 101–106.

Google Scholar

[19] T.-H. Tsai, K.-W. Lin, H.-I. Chen, I.-P. Liu, C.-W. Hung, L.-Y. Chen, Y.-Y. Tsai, T.-P. Chen, K.-Y. Chu, W.-C. Liu, Transient response of a transistor-based hydrogen sensor, J. Sens. Actuators B Chem. 129 (2008) 750–754.

DOI: 10.1016/j.snb.2008.06.034

Google Scholar

[20] I.V. Zaporotskova, N.P. Boroznina, S.V. Boroznin, P.A. Zaporotskov, About Using Carbon Nanotubes with Amino Group Modification as Sensors, J. Nano Electron. Phys. 7 (2015) 04089.

Google Scholar

[21] I.V. Zaporotskova, L.V. Kozhitov, N.P. Boroznina, Sensor Activity with Respect to Alkali Metals of a Carbon Nanotube Edge-Modified with Amino Group, J. Inorg. Chem. 62 (2017) 1458–1463.

DOI: 10.1134/s0036023617110213

Google Scholar

[22] M.S. Ribeiro, A.L. Pascoini, W.G. Knupp, I. Camps, Effects of surface functionalization on the electronic and structural properties of carbon nanotubes: A computational approach, J. Appl. Surf. Sci. 426 (2017) 781–787.

DOI: 10.1016/j.apsusc.2017.07.162

Google Scholar

[23] W. Koch, M.C. Holthausen, A Chemist's Guide to Density Functional Theory, Weinheim, Germany, (2002).

Google Scholar

[24] I.V. Zaporotskova, N.P. Polikarpova, A.V. Shkodin, D.I. Polikarpov, D.E. Vil'keeva, About boundary modification of nanotube systems by carboxile group, Nanoscience & nanotechnology, 2013, pp.52-53.

Google Scholar

[25] N.P. Boroznina, I.V. Zaporotskova, S.V. Boroznin, E.S. Dryuchkov, Chemosensors. 7 (2019) 1-7.

DOI: 10.3390/chemosensors7010011

Google Scholar