[1]
ASM Specialty Handbook: Stainless Steels - ASM International., https://www.asminternational.org/home/-/journal_content/56/10192/06398G/PUBLICATION (accessed Sep. 30, 2020).
Google Scholar
[2]
S. Kumar and A. S. Shahi, Effect of heat input on the microstructure and mechanical properties of gas tungsten arc welded AISI 304 stainless steel joints,, Mater. Des., vol. 32, no. 6, p.3617–3623, Jun. 2011,.
DOI: 10.1016/j.matdes.2011.02.017
Google Scholar
[3]
R. Kumar, S. Chattopadhyaya, and S. Kumar, Influence of Welding Current on Bead Shape, Mechanical and Structural Property of Tungsten Inert Gas Welded Stainless Steel Plate,, Mater. Today Proc., vol. 2, no. 4–5, p.3342–3349, 2015,.
DOI: 10.1016/j.matpr.2015.07.307
Google Scholar
[4]
H. kumar and N. K. Singh, Performance of activated TIG welding in 304 austenitic stainless steel welds,, Mater. Today Proc., vol. 4, no. 9, p.9914–9918, 2017,.
DOI: 10.1016/j.matpr.2017.06.293
Google Scholar
[5]
D. Mishra and M. Dakkili, Gas tungsten and shielded metal arc welding of stainless steel 310 and 304 grades over single and double 'V' butt joints,, Mater. Today Proc., vol. 27, p.772–776, 2020,.
DOI: 10.1016/j.matpr.2019.12.189
Google Scholar
[6]
C. Wichan and S. Loeshpahn, Effect of Filler Alloy on Microstructure, Mechanical and Corrosion Behaviour of Dissimilar Weldment between Aisi 201 Stainless Steel and Low Carbon Steel Sheets Produced by a Gas Tungsten Arc Welding,, Adv. Mater. Res., vol. 581–582, p.808–816, Oct. 2012,.
DOI: 10.4028/www.scientific.net/amr.581-582.808
Google Scholar
[7]
W. Chuaiphan and L. Srijaroenpramong, Optimization of gas tungsten arc welding parameters for the dissimilar welding between AISI 304 and AISI 201 stainless steels,, Def. Technol., vol. 15, no. 2, p.170–178, Apr. 2019,.
DOI: 10.1016/j.dt.2018.06.007
Google Scholar
[8]
R. Kant, R. Mittal, C. Kumar, B. S. Rana, M. Kumar, and R. Kumar, Fabrication and Characterization of Weldments AISI 304 and AISI 316 Used in Industrial Applications,, Mater. Today Proc., vol. 5, no. 9, p.18475–18481, 2018,.
DOI: 10.1016/j.matpr.2018.06.189
Google Scholar
[9]
L. Dong, C. Ma, Q. Peng, E.-H. Han, and W. Ke, Microstructure and stress corrosion cracking of a SA508-309L/308L-316L dissimilar metal weld joint in primary pressurized water reactor environment,, J. Mater. Sci. Technol., vol. 40, p.1–14, Mar. 2020,.
DOI: 10.1016/j.jmst.2019.08.035
Google Scholar
[10]
BPVC Section IX - Welding, Brazing & Fusing Qualifications - ASME., https://www.asme.org/codes-standards/find-codes-standards/bpvc-ix-bpvc-section-ix-welding-brazing-fusing-qualifications (accessed Sep. 30, 2020).
DOI: 10.26628/wtr.v91i9.1070
Google Scholar
[11]
G. Casalino, A. Angelastro, P. Perulli, C. Casavola, and V. Moramarco, Study on the fiber laser/TIG weldability of AISI 304 and AISI 410 dissimilar weld,, J. Manuf. Process., vol. 35, p.216–225, Oct. 2018,.
DOI: 10.1016/j.jmapro.2018.08.005
Google Scholar
[12]
W. Chuaiphan and L. Srijaroenpramong, Effect of welding speed on microstructures, mechanical properties and corrosion behavior of GTA-welded AISI 201 stainless steel sheets,, J. Mater. Process. Technol., vol. 214, no. 2, p.402–408, Feb. 2014,.
DOI: 10.1016/j.jmatprotec.2013.09.025
Google Scholar
[13]
R. Blondeau, Metallurgy and Mechanics of Welding,, p.514.
Google Scholar
[14]
I. R. Souza Filho et al., Effects of strain-induced martensite and its reversion on the magnetic properties of AISI 201 austenitic stainless steel,, J. Magn. Magn. Mater., vol. 419, p.156–165, Dec. 2016,.
DOI: 10.1016/j.jmmm.2016.06.027
Google Scholar
[15]
G. R. Mirshekari, E. Tavakoli, M. Atapour, and B. Sadeghian, Microstructure and corrosion behavior of multipass gas tungsten arc welded 304L stainless steel,, Mater. Des., vol. 55, p.905–911, Mar. 2014,.
DOI: 10.1016/j.matdes.2013.10.064
Google Scholar
[16]
J. G. Thakare, C. Pandey, M. M. Mahapatra, and R. S. Mulik, An assessment for mechanical and microstructure behavior of dissimilar material welded joint between nuclear grade martensitic P91 and austenitic SS304 L steel,, J. Manuf. Process., vol. 48, p.249–259, Dec. 2019,.
DOI: 10.1016/j.jmapro.2019.10.002
Google Scholar
[17]
J. C. Lippold, Welding Metallurgy and Weldability,, p.421.
Google Scholar
[18]
A. Balaram Naik and A. Chennakeshava Reddy, Optimization of tensile strength in TIG welding using the Taguchi method and analysis of variance (ANOVA),, Therm. Sci. Eng. Prog., vol. 8, p.327–339, Dec. 2018,.
DOI: 10.1016/j.tsep.2018.08.005
Google Scholar
[19]
D. Kumar Singh, G. Sahoo, R. Basu, V. Sharma, and M. A. Mohtadi-Bonab, Investigation on the microstructure—mechanical property correlation in dissimilar steel welds of stainless steel SS 304 and medium carbon steel EN 8,, J. Manuf. Process., vol. 36, p.281–292, Dec. 2018,.
DOI: 10.1016/j.jmapro.2018.10.018
Google Scholar
[20]
S. K. Rajput, A. Kumar, S. S. Tripathi, and E. Sachan, Investigation of microstructural behavior and mechanical properties of dissimilar weld joints of austenitic-ferritic stainless steel,, Mater. Today Proc., vol. 25, p.778–784, 2020,.
DOI: 10.1016/j.matpr.2019.09.018
Google Scholar
[21]
A. R. Khalifeh, A. Dehghan, and E. Hajjari, Dissimilar joining of AISI 304L/St37 steels by TIG welding process,, Acta Metall. Sin. Engl. Lett., vol. 26, no. 6, p.721–727, Dec. 2013,.
DOI: 10.1007/s40195-013-0194-9
Google Scholar