Immobilization of Silver Nanoparticles on Chitosan-Coated Silica-Gel-Beads and the Antibacterial Activity

Article Preview

Abstract:

Silver nanoparticles (Ag0) have attracted the most attention due to their broad antimicrobial application and outstanding activity. The silver nanoparticles are usually in colloidal form, then immobilization the colloid onto solid support is still interesting to explore. In this work, a new method for silver colloidal nanoparticle immobilization on silica gel beads (SiG), which was then symbolized as Ag0-[chi-SiG] was conducted and characterized successfully. The finding proved that SiG must be coated with three chitosan film layers to give stable support for silver nanoparticles. This coating method caused the chitosan completely covered SiG, and the chitosan film provides coordination bonding for silver ions. The most appropriate solvent for silver ion impregnation on the surface of chi-SiG is methanol compared to other solvents. Tungsten lamp as the photo-irradiation, which is low cost and environmentally friendly has been proven effective for silver ion reduction, as shown by silver metal colloid UV-Vis surface plasmon resonance at 400-700 nm. Ag0-[chi-SiG] showed the antibacterial properties of inhibiting the growth Staphylococcus aureus and Escherichia coli; then it provides the potential application for antibacterial filter material. According to the weight comparison between antibacterial standard and Ag content, then Ag0-[chi-SiG] has two and five times higher of exhibiting zone for each bacteria.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

36-42

Citation:

Online since:

July 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Catauro, F. Bollino, F. Papale, S. Marciano, S. Pacifico. Mater. Sci. Eng. C 47 (2015)135-141.

Google Scholar

[2] H. Jia, J. Cao, Y. Lu, Curr. Opin. Green Sustain. Chem. 4 (2017) 16-22.

Google Scholar

[3] X. Tian, L. Zhang, M. Yang, L. Bai, Y. Dai, Z. Yu, Y. Pan. Rev. Nanomed. Nanobiotechnol., 10 (2018) e1476.

Google Scholar

[4] P. Jittabut, Energy Procedia. 79 (2015) 10-17.

Google Scholar

[5] W. Chuang, J. Geng-sheng, P. Lei, Z. Bao-Iin, L. Ke-zhi, W. Jun-long, Result Phys., 9 (2028) 886-896.

Google Scholar

[6] C.H. Lee, S.H. Park, W. Chung, J.Y. Kim, S.H. Kim, Colloids Surf. A Physicochem. 384 (2011) 318-322.

Google Scholar

[7] T.M. Budnyak, L.V. Pylypchuk, V.A. Tertykh, E.S. Yanovska, D. Kolodynska. Nanoscale Res. Lett. 10 (2015) 1-10.

DOI: 10.1186/s11671-014-0722-1

Google Scholar

[8] F. Zarlaida, M. Adlim, M.S. Surbakti, A.F Omar. Conf. Ser.: Mater. Sci. Eng. 352 (2028) 012049.

DOI: 10.1088/1757-899x/352/1/012049

Google Scholar

[9] L.A.M Van Den Broek, R.J.I. Knoop, F.H.I. Kappen, C. G. Boeriu. Carbohydr. Polym. 116 (2015) 237-242.

Google Scholar

[10] N. Mati-Baouche, P. H. Elchinger, H. De Baynast, G. Pierre, C. Delattre, P. Michaud. Eur. Carbohydr. J. 60 (2014) 192-212.

DOI: 10.1016/j.eurpolymj.2014.09.008

Google Scholar

[11] S. Bashir, Y. Y. Teo, S. Ramesh, K. Ramesh, A.A. Khan, Review Chem. Eng. 31 (2015) 563-597.

Google Scholar

[12] Q.L. Feng, J. Wu, G.Q. Chen, F.Z. Cui, T.N. Kim, J.O. Kim. J. Biomed 52 (2000) 662-668.

Google Scholar

[13] M. Adlim, F. Zarlaida, I. Khaldun, R. Dewi, S. Karina, A.F. Omar. Indones. J. Chem. 2 (2019) 386-394.

Google Scholar

[14] M Adlim, F Zarlaida, RFI Rahmayani, R Wardani. Inviron. Technol. Innov. 16 (2019) 100442.

Google Scholar

[15] M Adlim, S Karina, F Zarlaida, I Khaldun, N A Fadila, NHHA Bakar, Environ. Technol. Innov. 13 (2019) 74-81.

DOI: 10.1016/j.eti.2018.10.011

Google Scholar

[16] Z. Weiwei, M. Zhipeng, W. Yazhe, C. Ying, Y. Endong, G. Feng, S. Dongdong, W. Weiyun. Mater. Sci. Eng. C 97 (2019) 486-497.

Google Scholar

[17] N. Chen, Y. Zheng, J. Yin, X. Lia, C. Zheng. J. Virology Methods 193(2013) v470.

Google Scholar

[18] A.T. Hang, B. Tae, J.S. Park. Carbohydr. Polym. 82 (2020) 472-479.

Google Scholar

[19] F. Zarlaida, M. Adlim, Microchim Acta 184 (2017) 45-58.

Google Scholar

[20] F.M. Reicha, A. Sarhan, M.I. Abdel-Hamid, I.M. El-Sherbiny. Carbohydr. Polym. 89 (2012) 236-244.

Google Scholar

[21] A. Regiel, S. Irusta, A. Kyziol, M. Arruebo, J. Santamaria. Nanothecnology 24 (2013) 15101.

Google Scholar

[22] P. Raveendran, J. Fu, S.L. Wallen. Green Chem. 8 (2006) 34-38.

Google Scholar

[23] Y.K. Twu, Y.W. Chen, C.M. Shih. Powder Technology 185 (2008) 251-257.

Google Scholar

[24] A. Adlim. Jurnal Sains dan Teknologi 12 (2006) 185-191.

Google Scholar

[25] P. Cazon, G. Velazquez, J.A. Ramírez, M.Vázquez, Food Hydrocolloids 68 (2017) 136-148.

Google Scholar

[26] I. Aranaz, C. Castro, A. Heras, N. Acosta, Biomimetics 3 (2018) 21.

Google Scholar

[27] A. Adlim, M.A. Bakar. Indo. J. Chem. 8 (2008) 184-188.

Google Scholar

[28] A. Adlim, M.A. Bakar. Indo. J. Chem. 8 (2008) 320-326.

Google Scholar

[29] U. Siripatrawan U, W. Vitchayakitti. Food Hydrocolloids 61 (2016) 695-702.

Google Scholar

[30] G. Gnana Kumar, B. Karunagaran, K.S. Nahm, N. Elizabeth. Nanoscale Res. Lett. 4 (2009). 452-458.

Google Scholar

[31] D.V. Quang, P.B. Sarawade, A. Hilonga, J.-K. Kim, Y.G. Chai, S.H. Kim, J.-Y. Ryu, H.T. Kim. Colloids Surf. A. 389 (2011) 118-126.

DOI: 10.1016/j.colsurfa.2011.08.042

Google Scholar

[32] P. Pavoski, D.L.S. Baldisserotto, T. Maraschin, L.F.W. Brum, C. dos Santos, J. Henrique, Z. dos Santos, A. Brandelli, G. B. Galland. Eur. Polym. J. 117 (2019) 38-54.

DOI: 10.1016/j.eurpolymj.2019.04.055

Google Scholar