The Design of Reactive Powder Concrete (RPC) Mixtures Using Aceh Quartzite Powder

Article Preview

Abstract:

Original reactive powder concrete (RPC) consists of a large amount of cement, fine sand, crushed quartz, and silica fume, with a very dense matrix achieved by optimizing the granular packaging of the materials. This study, therefore, applied the modified Andreasen & Andersen particle-packing model using Aceh quartzite powder to design a densely compacted matrix and low cement content RPC mixtures. The research involved the preparation of two series of the mixture with different percentages of silica fume and Aceh quartzite powder and the 70.7 mm cube specimens were treated with combined steam curing and normal curing after which their compressive strength was tested at the age of 7 days and 28 days. The result showed the use of 61% local quartzite powder by weight of cement through an optimized mix design and cured treatment improves the RPC strength at any variation of silica fume.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

43-50

Citation:

Online since:

July 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Yanzhou, H. Shuguang, and D. Qingjun, Preparation of Reactive Powder Concrete Using Fly Ash and Steel Slag Powder, J. Wuhan Univ. Technol., Sci. Ed, (2010) 349–354.

DOI: 10.1007/s11595-010-2349-0

Google Scholar

[2] H. Yazici, M. Y. Yardimci, H. Yiǧiter, S. Aydin, and S. Türkel, Mechanical properties of reactive powder concrete containing high volumes of ground granulated blast furnace slag, Cem. Concr. Compos., 32 No.8, (2010) 639–648.

DOI: 10.1016/j.cemconcomp.2010.07.005

Google Scholar

[3] N. Van Tuan et al., The study of using rice husk ash to produce ultra high performance concrete, Constr. Build. Mater., 25 No.4, (2011) 2030–(2035).

DOI: 10.1016/j.conbuildmat.2010.11.046

Google Scholar

[4] W. Kushartomo, I. Bali, and B. Sulaiman, Mechanical behavior of reactive powder concrete with glass powder substitute, Procedia Eng., 125, (2015) 617–622.

DOI: 10.1016/j.proeng.2015.11.082

Google Scholar

[5] W. Huang, H. Kazemi-kamyab, W. Sun, and K. Scrivener, Effect of cement substitution by limestone on the hydration and microstructural development of ultra-high performance concrete (UHPC), Cem. Concr. Compos., 77, (2017) 86–101.

DOI: 10.1016/j.cemconcomp.2016.12.009

Google Scholar

[6] T. Saidi, M. Hasan, A. D. D. Riski1, R. R. Ayunizar, and A. Mubarak, Mix design and properties of reactive powder concrete with diatomaceous earth as cement replacement, IOP Conf. Ser. Mater. Sci. Eng., 933 012007, (2020).

DOI: 10.1088/1757-899x/933/1/012007

Google Scholar

[7] M. Hasan, T. Saidi, A. Muyasir, Y. R. Alkhaly, and M. Muslimsyah, Characteristic of calcined diatomaceous earth from Aceh Besar District - Indonesia as cementitious binder, OP Conf. Ser. Mater. Sci. Eng., 933 012008, (2020).

DOI: 10.1088/1757-899x/933/1/012008

Google Scholar

[8] R. Yu, P. Spiesz, and H. J. H. Brouwers, Mix design and properties assessment of Ultra-High Performance Fibre Reinforced Concrete (UHPFRC), Cem. Concr. Res., 56, (2014) 29–39.

DOI: 10.1016/j.cemconres.2013.11.002

Google Scholar

[9] P. Richard and M. Cheyrezy, Composition of Reactive Powder Concretes, Cem. Concr. Res., 25 No.7, (1995) 1501–1511.

DOI: 10.1016/0008-8846(95)00144-2

Google Scholar

[10] K. Wille, A. E. Naman, and G. J. Parra-Montesinos, Ultra-High Performance Concrete with Compressive Strength Exceeding 150 MPa (22ksi): A Simpler Way, ACI Mater. J., 108 No.1, (2011) 46–53.

DOI: 10.14359/51664215

Google Scholar

[11] S. Ahmad, I. Hakeem, and M. Maslehuddin, Development of UHPC Mixtures Utilizing Natural and Industrial Waste Materials as Partial Replacements of Silica Fume and Sand, Sci. World J., 2014, (2014) 1–8.

DOI: 10.1155/2014/713531

Google Scholar

[12] N. P. Lee and D. H. Chisholm, Reactive Powder Concrete. Study Report SR 146, BRANZ Ltd., Judgeford, New Zealand.

Google Scholar

[13] M. Ángel, C. Argiz, J. C. Gálvez, and A. Moragues, Effect of silica fume fineness on the improvement of Portland cement strength performance, Constr. Build. Mater., 96, (2015) 55–64.

DOI: 10.1016/j.conbuildmat.2015.07.092

Google Scholar

[14] H. Yigiter, S. Aydin, H. Yazici, and M. Y. Yardimci, Mechanical Performance of Low Cement Reactive Powder Concrete (LCRPC), Compos. Part B Eng., 43 No.8, (2012) 2907–2914.

DOI: 10.1016/j.compositesb.2012.07.042

Google Scholar

[15] E. Ghafari, S. A. Ghahari, H. Costa, E. Júlio, and L. Durães, Effect of supplementary cementitious materials on autogenous shrinkage of ultra-high performance concrete, Constr. Build. Mater., 127, (2016) 43–48.

DOI: 10.1016/j.conbuildmat.2016.09.123

Google Scholar

[16] A. Alsalman, C. N. Dang, and W. M. Hale, Development of ultra-high performance concrete with locally available materials, Constr. Build. Mater., 133, (2017) 135–145.

DOI: 10.1016/j.conbuildmat.2016.12.040

Google Scholar

[17] M. A. Elrahman and B. Hillemeier, Combined effect of fine fly ash and packing density on the properties of high performance concrete : An experimental approach, Constr. Build. Mater., 58, (2014) 225–233.

DOI: 10.1016/j.conbuildmat.2014.02.024

Google Scholar

[18] M. N. Mangulkar and S. S. Jamkar, Review of Particle Packing Theories Used For Concrete Mix Proportioning, Int. J. Sci. Eng. Res., 4 No.5, (2013) 143–148.

Google Scholar

[19] Elkem, User Guide Elkem Materials Mixture Analyser – EMMA. 2016, (2016).

Google Scholar

[20] C. M. Tam, V. W. Y. Tam, and K. M. Ng, Assessing drying shrinkage and water permeability of reactive powder concrete produced in Hong Kong, Constr. Build. Mater., 26 No.1, (2012) 79–89.

DOI: 10.1016/j.conbuildmat.2011.05.006

Google Scholar