A Review on Current Development of Animal Bone-Based Sorbent for Heavy Metals Removal from Contaminated Water and Wastewater

Article Preview

Abstract:

This review article presents the usage of various animal bones such as chicken bone, fish bone, pig bone, camel bone, and cow bone as reliable biosorbent materials to remove heavy metals contained in contaminated water and wastewater. The sources and toxicity effects of heavy metal ions are also discussed properly. Then specific insights related to adsorption process and its influential factors along with the proven potentiality of selected biosorbents especially derived from animal bone are also explained. As the biosorbents are rich in particular organic and inorganic compounds and functional groups in nature, they play an important role in heavy metal removal from contaminated solutions. Overall, after conducting study reports on the literature, a brief conclusion can be drawn that animal bone waste has satisfactory efficacy as effective, efficient, and environmentally friendly sorbent material.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

109-115

Citation:

Online since:

August 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Bhattacharjee, S. Dutta, V.K. Saxena: A Review on Biosorptive Removal of Dyes and Heavy Metals from Wastewater using Watermelon Rind as Biosorbent, Environ. Advan. Vol. 2 (2020), p.100007.

DOI: 10.1016/j.envadv.2020.100007

Google Scholar

[2] S. Mishra, L. Cheng, A. Maiti: The Utilization of Agro-biomass/byproducts for Effective Bio-Removal of Dyes from Dyeing Wastewater: A comprehensive review, J. of Environ. Chem. Eng. Vol 9 (2021), 104901.

DOI: 10.1016/j.jece.2020.104901

Google Scholar

[3] H. Esmaeili, S. Tamjidi, M. Abed: Removal of Cu (II), Co (II) and Pb (II) from Synthetic and Real Wastewater Using Calcified Solamen Vaillanti Snail Shell, Desalin. Water Treat. Vol. 174 (2020), pp.324-335.

DOI: 10.5004/dwt.2020.24880

Google Scholar

[4] R. Chakraborty, A. Asthana, A.K. Singh, B. Jain, A.B.H. Susan: Adsorption of Heavy Metal Ions by Various Low-Cost Adsorbents: a Review, Inter. J. of Environ. Analytical Chem. Vol. (2020), pp.1-38.

DOI: 10.1080/03067319.2020.1722811

Google Scholar

[5] S. Martini: Pengolahan Limbah Cair Minyak Kanola Menggunakan Kombinasi Adsorpsi dan Membran Ultrafiltrasi Polimer, Kinetika Vol.10 (2019), pp.36-41.

Google Scholar

[6] S. Afroze, T.K. Sen, A Review on Heavy Metal Ions and Dye Adsorption from Water by Agricultural Solid Waste Adsorbents, Water, Air, & Soil Pollut. Vol. 229 (2018), p.225.

DOI: 10.1007/s11270-018-3869-z

Google Scholar

[7] S. Martini, S. Afroze, K. Ahmad Roni: Modified Eucalyptus Bark as a Sorbent for Simultaneous Removal of COD, Oil, and Cr(III) from Industrial Wastewater, Alexandria Eng. J. Vol. 59 (2020), pp.1637-1648.

DOI: 10.1016/j.aej.2020.04.010

Google Scholar

[8] S. Martini, H.M. Ang: Hybrid TiO2/UV/PVDF Ultrafiltration Membrane for Raw Canola Oil Wastewater Treatment, Desalin. and Water Treat. Vol. 148 (2019), pp.51-59.

DOI: 10.5004/dwt.2019.23771

Google Scholar

[9] S. Martini, H.M. Ang, H. Znad: Integrated Ultrafiltration Membrane Unit for Efficient Petroleum Refinery Effluent Treatment, CLEAN – Soil, Air, Water Vol. 45 (2017), 1600342.

DOI: 10.1002/clen.201600342

Google Scholar

[10] J. Willner, A. Fornalczyk: Application of Biological Method for Removing Selected Heavy Metals from Sewage Sludge, Physicochemical Problems of Mineral Processing, 56 (2020).

DOI: 10.37190/ppmp/118253

Google Scholar

[11] S. Martini, E. Yuliwati: Membrane Development and Its Hybrid Application for Oily Wastewater Treatment: A Review, J. of Appl. Membrane Sci. & Technol. Vol. 25 (2020), pp.57-71.

Google Scholar

[12] S. Tamjidi, H. Esmaeili: Chemically Modified CaO/Fe3O4 Nanocomposite by Sodium Dodecyl Sulfate for Cr (III) Removal from Water, Chem. Eng. & Technol. Vol. 42 (2019), pp.607-616.

DOI: 10.1002/ceat.201800488

Google Scholar

[13] J. Feng, J. Zhang, W. Song, J. Liu, Z. Hu, B. Bao: An Environmental-friendly Magnetic Bio-adsorbent for High-efficiency Pb (II) Removal: Preparation, Characterization and Its Adsorption Performance, Ecotoxicology and Environ. Safety Vol. 203 (2020), 111002.

DOI: 10.1016/j.ecoenv.2020.111002

Google Scholar

[14] A. Agarwal, U. Upadhyay, I. Sreedhar, S.A. Singh, C.M. Patel: A Review on Valorization of Biomass in Heavy Metal Removal from Wastewater, J. of Water Proc. Eng. Vol. 38 (2020), 101602.

DOI: 10.1016/j.jwpe.2020.101602

Google Scholar

[15] V. Masindi, K.L. Muedi: Environmental Contamination by Heavy Metals, Heavy Metals Vol.10 (2018), pp.115-132.

DOI: 10.5772/intechopen.76082

Google Scholar

[16] X. Luo, J. Guo, P. Chang, H. Qian, F. Pei, W. Wang, K. Miao, S. Guo, G. Feng: ZSM-5@ MCM-41 Composite Porous Materials with a Core-shell Structure: Adjustment of Mesoporous Orientation Basing on Interfacial Electrostatic Interactions and Their Application in Selective Aromatics Transport, Sep. and Purif. Technol. Vol. 239 (2020), 116516.

DOI: 10.1016/j.seppur.2020.116516

Google Scholar

[17] S. Tamjidi, B.K. Moghadas, H. Esmaeili, F.S. Khoo, G. Gholami, M. Ghasemi: Improving the Surface Properties of Adsorbents by Surfactants and Their Role in the Removal of Toxic Metals from Wastewater: A Review Study, Proc. Safety and Environ. Protec. Vol. 148 (2021), pp.775-795.

DOI: 10.1016/j.psep.2021.02.003

Google Scholar

[18] E. Bibaj, K. Lysigaki, J. Nolan, M. Seyedsalehi, E. Deliyanni, A. Mitropoulos, G. Kyzas: Activated Carbons from Banana peels for the Removal of Nickel Ions, Intern. J. of Environ. Sci. and Technol. Vol. 16 (2019), pp.667-680.

DOI: 10.1007/s13762-018-1676-0

Google Scholar

[19] S. Pavithra, T. Gomathi, S. Sugashini, P.N. Sudha, H.H. Alkhamis, A.F. Alrefaei, M.H. Almutairi: Batch Adsorption Studies on Surface Tailored Chitosan/Orange Peel Hydrogel Composite for the Removal of Cr(VI) and Cu(II) Ions from Synthetic Wastewater, Chemosphere Vol. 271 (2021), 129415.

DOI: 10.1016/j.chemosphere.2020.129415

Google Scholar

[20] P. Mishra, R. Patel: Removal of Lead and Zinc Ions from Water by Low Cost Adsorbents, J. of Hazard. Mater. Vol. 168 (2009), pp.319-325.

DOI: 10.1016/j.jhazmat.2009.02.026

Google Scholar

[21] M. Ahmaruzzaman, V.K. Gupta: Rice Husk and Its Ash as Low-cost Adsorbents in Water and Wastewater Treatment, Indust. & Eng. Chem. Res. Vol. 50 (2011), pp.13589-13613.

DOI: 10.1021/ie201477c

Google Scholar

[22] F.-L. Mi, S.-J. Wu, F.-M. Lin: Adsorption of Copper (II) Ions by a Chitosan–oxalate Complex Biosorbent, Inter. J. of Bio. Macromolecules Vol. 72 (2015), pp.136-144.

DOI: 10.1016/j.ijbiomac.2014.08.006

Google Scholar

[23] C.-S. Zhu, L.-P. Wang, W.-b. Chen: Removal of Cu (II) from Aqueous Solution by Agricultural By-product: Peanut Hull, J. of Hazard. Mater. Vol. 168 (2009), pp.739-746.

DOI: 10.1016/j.jhazmat.2009.02.085

Google Scholar

[24] B. Volesky: Biosorption and Me, Water Res. Vol. 41 (2007), pp.4017-4029.

Google Scholar

[25] S. Afroze, T.K. Sen, M. Ang, H. Nishioka: Adsorption of Methylene Blue Dye from Aqueous Solution by Novel Biomass Eucalyptus Sheathiana Bark: Equilibrium, Kinetics, Thermodynamics and Mechanism, Desalin. and Water Treat. Vol. (2015), pp.1-21.

DOI: 10.1080/19443994.2015.1004115

Google Scholar

[26] M.A. Ahsan, S.K. Katla, M.T. Islam, J.A. Hernandez-Viezcas, L.M. Martinez, C.A. Díaz-Moreno, J. Lopez, S.R. Singamaneni, J. Banuelos, J. Gardea-Torresdey, J.C. Noveron: Adsorptive Removal of Methylene Blue, Tetracycline and Cr(VI) from Water Using Sulfonated Tea Waste, Environ. Technol. & Innovation Vol. 11 (2018), pp.23-40.

DOI: 10.1016/j.eti.2018.04.003

Google Scholar

[27] M. Om Prakash, G. Raghavendra, S. Ojha, M. Panchal: Characterization of Porous Activated Carbon Prepared from Arhar Stalks by Single Step Chemical Activation Method, Materials Today: Proceedings Vol. 39 (2020), pp.1476-1481.

DOI: 10.1016/j.matpr.2020.05.370

Google Scholar

[28] Y. Zhou, D. Chang, J. Chang: Preparation of Nano‐structured Pig Bone Hydroxyapatite for High‐efficiency Adsorption of Pb2+ from Aqueous Solution, Intern. J. of Appl. Ceramic Technol. Vol. 14 (2017), pp.1125-1133.

DOI: 10.1111/ijac.12749

Google Scholar

[29] J. Xiao, R. Hu, G. Chen: Micro-nano-engineered Nitrogenous Bone Biochar Developed with a Ball-milling Technique for High-efficiency Removal of Aquatic Cd(II), Cu(II) and Pb(II), J. of Hazard. Mater. Vol. 387 (2020), 121980.

DOI: 10.1016/j.jhazmat.2019.121980

Google Scholar

[30] I.V. Joseph, L. Tosheva, A.M. Doyle: Simultaneous Removal of Cd (II), Co (II), Cu (II), Pb (II), and Zn (II) Ions from Aqueous Solutions via Adsorption on FAU-type Zeolites Prepared from Coal Fly Ash, J. of Environ. Chem. Eng. Vol. 8 (2020), 103895.

DOI: 10.1016/j.jece.2020.103895

Google Scholar

[31] Z. Ahmad, B. Gao, A. Mosa, H. Yu, X. Yin, A. Bashir, H. Ghoveisi, S. Wang: Removal of Cu (II), Cd (II) and Pb (II) Ions from Aqueous Solutions by Biochars Derived from Potassium-rich Biomass, J. of Clean. Prod. Vol. 180 (2018), pp.437-449.

DOI: 10.1016/j.jclepro.2018.01.133

Google Scholar

[32] O.f.E. Co-operation, Development: OECD-FAO Agricultural Outlook 2018-2027, OECD Publishing, (2018).

DOI: 10.1787/370bc432-lv

Google Scholar

[33] S. Sathiyavimal, S. Vasantharaj, M. Shanmugavel, E. Manikandan, P. Nguyen-Tri, K. Brindhadevi, A. Pugazhendhi: Facile Synthesis and Characterization of Hydroxyapatite from Fish Bones: Photocatalytic Degradation of Industrial Dyes (Crystal Violet and Congo Red), Prog. in Org. Coatings Vol. 148 (2020), 105890.

DOI: 10.1016/j.porgcoat.2020.105890

Google Scholar

[34] T. Yang, C. Han, J. Tang, Y. Luo: Removal Performance and Mechanisms of Cr (VI) by an In-situ Self-improvement of Mesoporous Biochar Derived from Chicken Bone, Environ. Sci. and Pollut. Res. Vol. 27 (2020), pp.5018-5029.

DOI: 10.1007/s11356-019-07116-4

Google Scholar

[35] J.-H. Park, J.J. Wang, S.-H. Kim, S.-W. Kang, J.-S. Cho, R.D. Delaune, Y.S. Ok, D.-C. Seo: Lead Sorption Characteristics of Various Chicken Bone Part-derived Chars, Environ. Geochem. and Health Vol. 41 (2019), pp.1675-1685.

DOI: 10.1007/s10653-017-0067-7

Google Scholar

[36] S.S. Alquzweeni, R.S. Alkizwini: Removal of Cadmium from Contaminated Water Using Coated Chicken Bones with Double-Layer Hydroxide (Mg/Fe-LDH), Water Vol. 12 (2020), 2303.

DOI: 10.3390/w12082303

Google Scholar

[37] S. Pawar, T. Theodore: Development of Hydroxyapatite from Waste Mutton Bones and its Application for Hexavalent Chromium Removal from Aqueous Solutions-Adsorption Isotherms and Kinetics Study, in: AIP Conference Proceedings, AIP Publishing LLC, 2020, p.030001.

DOI: 10.1063/5.0022839

Google Scholar

[38] S.S.A. Alkurdi, R.A. Al-Juboori, J. Bundschuh, L. Bowtell, S. McKnight: Effect of Pyrolysis Conditions on Bone Char Characterization and Its Ability for Arsenic and Fluoride Removal, Environ. Pollut. Vol. 262 (2020), 114221.

DOI: 10.1016/j.envpol.2020.114221

Google Scholar

[39] N.A. Medellín-Castillo, S.A. Cruz-Briano, R. Leyva-Ramos, J.C. Moreno-Piraján, A. Torres-Dosal, L. Giraldo-Gutiérrez, G.J. Labrada-Delgado, R.O. Pérez, J.P. Rodriguez-Estupiñan, S.Y. Reyes Lopez, M.S. Berber Mendoza: Use of Bone Char Prepared from an Invasive Species, Pleco Fish (Pterygoplichthys spp.), to Remove Fluoride and Cadmium(II) in Water, J. of Environ. Management Vol. 256 (2020), 109956.

DOI: 10.1016/j.jenvman.2019.109956

Google Scholar

[40] M.N. Rashed, A.A.-E. Gad, N.M. Fathy: Adsorption of Cd (II) and Pb (II) Using Physically Pretreated Camel Bone Biochar, Advan. J. of Chem. Sec. A Vol. 2 (2019), pp.347-364.

DOI: 10.33945/sami/ajca.2019.4.8

Google Scholar

[41] A.A. Alqadami, M.A. Khan, M. Otero, M.R. Siddiqui, B.-H. Jeon, K.M. Batoo: A Magnetic Nanocomposite Produced from Camel bones for an Efficient Adsorption of Toxic Metals from Water, J. of Clean. Prod. Vol. 178 (2018), pp.293-304.

DOI: 10.1016/j.jclepro.2018.01.023

Google Scholar

[42] H.S. Abd-Rabboh, K.F. Fawy, N.S. Awwad: Removal of copper (II) from Aqueous Samples Using Natural Activated Hydroxyapatite Sorbent Produced from Camel Bones, Desalin. Water Treat, 164 (2019) 300-309.

DOI: 10.5004/dwt.2019.24371

Google Scholar

[43] J.-H. Park, J.-J. Yun, S.-W. Kang, S.-H. Kim, J.-S. Cho, J.J. Wang, D.-C. Seo: Removal of Potentially Toxic Metal by Biochar Derived from Rendered Solid Residue with High Content of Protein and Bone Tissue, Ecotoxic. and Environ. Safety Vol. 208 (2021), 111690.

DOI: 10.1016/j.ecoenv.2020.111690

Google Scholar