[1]
C. Bhattacharjee, S. Dutta, V.K. Saxena: A Review on Biosorptive Removal of Dyes and Heavy Metals from Wastewater using Watermelon Rind as Biosorbent, Environ. Advan. Vol. 2 (2020), p.100007.
DOI: 10.1016/j.envadv.2020.100007
Google Scholar
[2]
S. Mishra, L. Cheng, A. Maiti: The Utilization of Agro-biomass/byproducts for Effective Bio-Removal of Dyes from Dyeing Wastewater: A comprehensive review, J. of Environ. Chem. Eng. Vol 9 (2021), 104901.
DOI: 10.1016/j.jece.2020.104901
Google Scholar
[3]
H. Esmaeili, S. Tamjidi, M. Abed: Removal of Cu (II), Co (II) and Pb (II) from Synthetic and Real Wastewater Using Calcified Solamen Vaillanti Snail Shell, Desalin. Water Treat. Vol. 174 (2020), pp.324-335.
DOI: 10.5004/dwt.2020.24880
Google Scholar
[4]
R. Chakraborty, A. Asthana, A.K. Singh, B. Jain, A.B.H. Susan: Adsorption of Heavy Metal Ions by Various Low-Cost Adsorbents: a Review, Inter. J. of Environ. Analytical Chem. Vol. (2020), pp.1-38.
DOI: 10.1080/03067319.2020.1722811
Google Scholar
[5]
S. Martini: Pengolahan Limbah Cair Minyak Kanola Menggunakan Kombinasi Adsorpsi dan Membran Ultrafiltrasi Polimer, Kinetika Vol.10 (2019), pp.36-41.
Google Scholar
[6]
S. Afroze, T.K. Sen, A Review on Heavy Metal Ions and Dye Adsorption from Water by Agricultural Solid Waste Adsorbents, Water, Air, & Soil Pollut. Vol. 229 (2018), p.225.
DOI: 10.1007/s11270-018-3869-z
Google Scholar
[7]
S. Martini, S. Afroze, K. Ahmad Roni: Modified Eucalyptus Bark as a Sorbent for Simultaneous Removal of COD, Oil, and Cr(III) from Industrial Wastewater, Alexandria Eng. J. Vol. 59 (2020), pp.1637-1648.
DOI: 10.1016/j.aej.2020.04.010
Google Scholar
[8]
S. Martini, H.M. Ang: Hybrid TiO2/UV/PVDF Ultrafiltration Membrane for Raw Canola Oil Wastewater Treatment, Desalin. and Water Treat. Vol. 148 (2019), pp.51-59.
DOI: 10.5004/dwt.2019.23771
Google Scholar
[9]
S. Martini, H.M. Ang, H. Znad: Integrated Ultrafiltration Membrane Unit for Efficient Petroleum Refinery Effluent Treatment, CLEAN – Soil, Air, Water Vol. 45 (2017), 1600342.
DOI: 10.1002/clen.201600342
Google Scholar
[10]
J. Willner, A. Fornalczyk: Application of Biological Method for Removing Selected Heavy Metals from Sewage Sludge, Physicochemical Problems of Mineral Processing, 56 (2020).
DOI: 10.37190/ppmp/118253
Google Scholar
[11]
S. Martini, E. Yuliwati: Membrane Development and Its Hybrid Application for Oily Wastewater Treatment: A Review, J. of Appl. Membrane Sci. & Technol. Vol. 25 (2020), pp.57-71.
Google Scholar
[12]
S. Tamjidi, H. Esmaeili: Chemically Modified CaO/Fe3O4 Nanocomposite by Sodium Dodecyl Sulfate for Cr (III) Removal from Water, Chem. Eng. & Technol. Vol. 42 (2019), pp.607-616.
DOI: 10.1002/ceat.201800488
Google Scholar
[13]
J. Feng, J. Zhang, W. Song, J. Liu, Z. Hu, B. Bao: An Environmental-friendly Magnetic Bio-adsorbent for High-efficiency Pb (II) Removal: Preparation, Characterization and Its Adsorption Performance, Ecotoxicology and Environ. Safety Vol. 203 (2020), 111002.
DOI: 10.1016/j.ecoenv.2020.111002
Google Scholar
[14]
A. Agarwal, U. Upadhyay, I. Sreedhar, S.A. Singh, C.M. Patel: A Review on Valorization of Biomass in Heavy Metal Removal from Wastewater, J. of Water Proc. Eng. Vol. 38 (2020), 101602.
DOI: 10.1016/j.jwpe.2020.101602
Google Scholar
[15]
V. Masindi, K.L. Muedi: Environmental Contamination by Heavy Metals, Heavy Metals Vol.10 (2018), pp.115-132.
DOI: 10.5772/intechopen.76082
Google Scholar
[16]
X. Luo, J. Guo, P. Chang, H. Qian, F. Pei, W. Wang, K. Miao, S. Guo, G. Feng: ZSM-5@ MCM-41 Composite Porous Materials with a Core-shell Structure: Adjustment of Mesoporous Orientation Basing on Interfacial Electrostatic Interactions and Their Application in Selective Aromatics Transport, Sep. and Purif. Technol. Vol. 239 (2020), 116516.
DOI: 10.1016/j.seppur.2020.116516
Google Scholar
[17]
S. Tamjidi, B.K. Moghadas, H. Esmaeili, F.S. Khoo, G. Gholami, M. Ghasemi: Improving the Surface Properties of Adsorbents by Surfactants and Their Role in the Removal of Toxic Metals from Wastewater: A Review Study, Proc. Safety and Environ. Protec. Vol. 148 (2021), pp.775-795.
DOI: 10.1016/j.psep.2021.02.003
Google Scholar
[18]
E. Bibaj, K. Lysigaki, J. Nolan, M. Seyedsalehi, E. Deliyanni, A. Mitropoulos, G. Kyzas: Activated Carbons from Banana peels for the Removal of Nickel Ions, Intern. J. of Environ. Sci. and Technol. Vol. 16 (2019), pp.667-680.
DOI: 10.1007/s13762-018-1676-0
Google Scholar
[19]
S. Pavithra, T. Gomathi, S. Sugashini, P.N. Sudha, H.H. Alkhamis, A.F. Alrefaei, M.H. Almutairi: Batch Adsorption Studies on Surface Tailored Chitosan/Orange Peel Hydrogel Composite for the Removal of Cr(VI) and Cu(II) Ions from Synthetic Wastewater, Chemosphere Vol. 271 (2021), 129415.
DOI: 10.1016/j.chemosphere.2020.129415
Google Scholar
[20]
P. Mishra, R. Patel: Removal of Lead and Zinc Ions from Water by Low Cost Adsorbents, J. of Hazard. Mater. Vol. 168 (2009), pp.319-325.
DOI: 10.1016/j.jhazmat.2009.02.026
Google Scholar
[21]
M. Ahmaruzzaman, V.K. Gupta: Rice Husk and Its Ash as Low-cost Adsorbents in Water and Wastewater Treatment, Indust. & Eng. Chem. Res. Vol. 50 (2011), pp.13589-13613.
DOI: 10.1021/ie201477c
Google Scholar
[22]
F.-L. Mi, S.-J. Wu, F.-M. Lin: Adsorption of Copper (II) Ions by a Chitosan–oxalate Complex Biosorbent, Inter. J. of Bio. Macromolecules Vol. 72 (2015), pp.136-144.
DOI: 10.1016/j.ijbiomac.2014.08.006
Google Scholar
[23]
C.-S. Zhu, L.-P. Wang, W.-b. Chen: Removal of Cu (II) from Aqueous Solution by Agricultural By-product: Peanut Hull, J. of Hazard. Mater. Vol. 168 (2009), pp.739-746.
DOI: 10.1016/j.jhazmat.2009.02.085
Google Scholar
[24]
B. Volesky: Biosorption and Me, Water Res. Vol. 41 (2007), pp.4017-4029.
Google Scholar
[25]
S. Afroze, T.K. Sen, M. Ang, H. Nishioka: Adsorption of Methylene Blue Dye from Aqueous Solution by Novel Biomass Eucalyptus Sheathiana Bark: Equilibrium, Kinetics, Thermodynamics and Mechanism, Desalin. and Water Treat. Vol. (2015), pp.1-21.
DOI: 10.1080/19443994.2015.1004115
Google Scholar
[26]
M.A. Ahsan, S.K. Katla, M.T. Islam, J.A. Hernandez-Viezcas, L.M. Martinez, C.A. Díaz-Moreno, J. Lopez, S.R. Singamaneni, J. Banuelos, J. Gardea-Torresdey, J.C. Noveron: Adsorptive Removal of Methylene Blue, Tetracycline and Cr(VI) from Water Using Sulfonated Tea Waste, Environ. Technol. & Innovation Vol. 11 (2018), pp.23-40.
DOI: 10.1016/j.eti.2018.04.003
Google Scholar
[27]
M. Om Prakash, G. Raghavendra, S. Ojha, M. Panchal: Characterization of Porous Activated Carbon Prepared from Arhar Stalks by Single Step Chemical Activation Method, Materials Today: Proceedings Vol. 39 (2020), pp.1476-1481.
DOI: 10.1016/j.matpr.2020.05.370
Google Scholar
[28]
Y. Zhou, D. Chang, J. Chang: Preparation of Nano‐structured Pig Bone Hydroxyapatite for High‐efficiency Adsorption of Pb2+ from Aqueous Solution, Intern. J. of Appl. Ceramic Technol. Vol. 14 (2017), pp.1125-1133.
DOI: 10.1111/ijac.12749
Google Scholar
[29]
J. Xiao, R. Hu, G. Chen: Micro-nano-engineered Nitrogenous Bone Biochar Developed with a Ball-milling Technique for High-efficiency Removal of Aquatic Cd(II), Cu(II) and Pb(II), J. of Hazard. Mater. Vol. 387 (2020), 121980.
DOI: 10.1016/j.jhazmat.2019.121980
Google Scholar
[30]
I.V. Joseph, L. Tosheva, A.M. Doyle: Simultaneous Removal of Cd (II), Co (II), Cu (II), Pb (II), and Zn (II) Ions from Aqueous Solutions via Adsorption on FAU-type Zeolites Prepared from Coal Fly Ash, J. of Environ. Chem. Eng. Vol. 8 (2020), 103895.
DOI: 10.1016/j.jece.2020.103895
Google Scholar
[31]
Z. Ahmad, B. Gao, A. Mosa, H. Yu, X. Yin, A. Bashir, H. Ghoveisi, S. Wang: Removal of Cu (II), Cd (II) and Pb (II) Ions from Aqueous Solutions by Biochars Derived from Potassium-rich Biomass, J. of Clean. Prod. Vol. 180 (2018), pp.437-449.
DOI: 10.1016/j.jclepro.2018.01.133
Google Scholar
[32]
O.f.E. Co-operation, Development: OECD-FAO Agricultural Outlook 2018-2027, OECD Publishing, (2018).
DOI: 10.1787/370bc432-lv
Google Scholar
[33]
S. Sathiyavimal, S. Vasantharaj, M. Shanmugavel, E. Manikandan, P. Nguyen-Tri, K. Brindhadevi, A. Pugazhendhi: Facile Synthesis and Characterization of Hydroxyapatite from Fish Bones: Photocatalytic Degradation of Industrial Dyes (Crystal Violet and Congo Red), Prog. in Org. Coatings Vol. 148 (2020), 105890.
DOI: 10.1016/j.porgcoat.2020.105890
Google Scholar
[34]
T. Yang, C. Han, J. Tang, Y. Luo: Removal Performance and Mechanisms of Cr (VI) by an In-situ Self-improvement of Mesoporous Biochar Derived from Chicken Bone, Environ. Sci. and Pollut. Res. Vol. 27 (2020), pp.5018-5029.
DOI: 10.1007/s11356-019-07116-4
Google Scholar
[35]
J.-H. Park, J.J. Wang, S.-H. Kim, S.-W. Kang, J.-S. Cho, R.D. Delaune, Y.S. Ok, D.-C. Seo: Lead Sorption Characteristics of Various Chicken Bone Part-derived Chars, Environ. Geochem. and Health Vol. 41 (2019), pp.1675-1685.
DOI: 10.1007/s10653-017-0067-7
Google Scholar
[36]
S.S. Alquzweeni, R.S. Alkizwini: Removal of Cadmium from Contaminated Water Using Coated Chicken Bones with Double-Layer Hydroxide (Mg/Fe-LDH), Water Vol. 12 (2020), 2303.
DOI: 10.3390/w12082303
Google Scholar
[37]
S. Pawar, T. Theodore: Development of Hydroxyapatite from Waste Mutton Bones and its Application for Hexavalent Chromium Removal from Aqueous Solutions-Adsorption Isotherms and Kinetics Study, in: AIP Conference Proceedings, AIP Publishing LLC, 2020, p.030001.
DOI: 10.1063/5.0022839
Google Scholar
[38]
S.S.A. Alkurdi, R.A. Al-Juboori, J. Bundschuh, L. Bowtell, S. McKnight: Effect of Pyrolysis Conditions on Bone Char Characterization and Its Ability for Arsenic and Fluoride Removal, Environ. Pollut. Vol. 262 (2020), 114221.
DOI: 10.1016/j.envpol.2020.114221
Google Scholar
[39]
N.A. Medellín-Castillo, S.A. Cruz-Briano, R. Leyva-Ramos, J.C. Moreno-Piraján, A. Torres-Dosal, L. Giraldo-Gutiérrez, G.J. Labrada-Delgado, R.O. Pérez, J.P. Rodriguez-Estupiñan, S.Y. Reyes Lopez, M.S. Berber Mendoza: Use of Bone Char Prepared from an Invasive Species, Pleco Fish (Pterygoplichthys spp.), to Remove Fluoride and Cadmium(II) in Water, J. of Environ. Management Vol. 256 (2020), 109956.
DOI: 10.1016/j.jenvman.2019.109956
Google Scholar
[40]
M.N. Rashed, A.A.-E. Gad, N.M. Fathy: Adsorption of Cd (II) and Pb (II) Using Physically Pretreated Camel Bone Biochar, Advan. J. of Chem. Sec. A Vol. 2 (2019), pp.347-364.
DOI: 10.33945/sami/ajca.2019.4.8
Google Scholar
[41]
A.A. Alqadami, M.A. Khan, M. Otero, M.R. Siddiqui, B.-H. Jeon, K.M. Batoo: A Magnetic Nanocomposite Produced from Camel bones for an Efficient Adsorption of Toxic Metals from Water, J. of Clean. Prod. Vol. 178 (2018), pp.293-304.
DOI: 10.1016/j.jclepro.2018.01.023
Google Scholar
[42]
H.S. Abd-Rabboh, K.F. Fawy, N.S. Awwad: Removal of copper (II) from Aqueous Samples Using Natural Activated Hydroxyapatite Sorbent Produced from Camel Bones, Desalin. Water Treat, 164 (2019) 300-309.
DOI: 10.5004/dwt.2019.24371
Google Scholar
[43]
J.-H. Park, J.-J. Yun, S.-W. Kang, S.-H. Kim, J.-S. Cho, J.J. Wang, D.-C. Seo: Removal of Potentially Toxic Metal by Biochar Derived from Rendered Solid Residue with High Content of Protein and Bone Tissue, Ecotoxic. and Environ. Safety Vol. 208 (2021), 111690.
DOI: 10.1016/j.ecoenv.2020.111690
Google Scholar