Low-Temperature Synthesis of ZnO Nanoparticles with Controlled Crystal Growth for Efficient Ultraviolet Photocatalyst

Article Preview

Abstract:

In this paper, we report that an effective and simple chemical method under the low temperature (60 °C) could synthesize zinc oxide (ZnO) nanoparticles and effectively control the crystal growth based on the hydrothermal method. X-ray diffraction, X-ray electron spectroscopy, high resolution transmission electron microscopy and ultra violet visible spectroscopy were used to characterize the structure and performance of the samples. It is shown that the ZnO nanoparticles synthesized under the optimal reaction conditions are strong ultraviolet absorption, high-uniformed sphere and high specific surface. In the photodegradation of rhodamine B (RhB) tests, ZnO nanoparticles thrived well during the reaction and degraded the material in 50 minutes. Since ZnO nanoparticles towards RhB degradation shows a good stability, it might provide an effective way to tackle environmental pollution.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

125-133

Citation:

Online since:

August 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Q. Z. Wu, X. Chen, P. Zhang, Y. C. Han, X. M. Chen, Y. H. Yan and S. P. Li, Amino acid-assisted synthesis of ZnO hierarchical architectures and their novel photocatalytic activities. Crystal Growth & Design, 8 (2008) 3010-3018.

DOI: 10.1021/cg800126r

Google Scholar

[2] S. C. Karumuthil, K. Singh, U. Valiyaneerilakkal, J. Akhtar, S. Varghese, Fabrication of poly (vinylidene fluoride-trifluoroethylene) – Zinc oxide based piezoelectric pressure sensor[J]. Sensors and Actuators A: Physical, 303 (2020) 111677.

DOI: 10.1016/j.sna.2019.111677

Google Scholar

[3] F. Cao, C. Li, M. Li, Direct growth of Al-doped ZnO ultrathin nanosheets on electrode for ethanol gas sensor application. Applied Surface Science, 447 (2018) 173-181.

DOI: 10.1016/j.apsusc.2018.03.217

Google Scholar

[4] J. Im, F.E. Lofflfler, Fate of bisphenol A in terrestrial and aquatic environments, Environ. Sci. Technol. 50 (2016) 8403-8416.

DOI: 10.1021/acs.est.6b00877

Google Scholar

[5] C. Lei, M. Pi, C. Jiang, B. Cheng, J. Yu, Synthesis of hierarchical porous zinc oxide (ZnO) microspheres with highly effificient adsorption of Congo red, J. Colloid Interface Sci. 490 (2017) 242-251.

DOI: 10.1016/j.jcis.2016.11.049

Google Scholar

[6] C. Qi, X. Liu, J. Ma, C. Lin, X. Li, H. Zhang, Activation of peroxymonosulfate by base: implications for the degradation of organic pollutants, Chemosphere 151 (2016) 280-288.

DOI: 10.1016/j.chemosphere.2016.02.089

Google Scholar

[7] C. Sushma, S.G. Kumar, Advancements in the zinc oxide nanomaterials for effificient photocatalysis, Chem. Pap. 71 (2017) 2023-2042.

DOI: 10.1007/s11696-017-0217-5

Google Scholar

[8] Y. Jin, J. Wang, B. Sun, J. C. Blakesley and N. C. Greenham, Nano Lett., 8 (2008) 1649–1653.

Google Scholar

[9] K. Qi, B. Cheng, J. Yu, W. Ho, Review on the improvement of the photocatalytic and antibacterial activities of ZnO, J. Alloy. Comp. 727 (2017) 792-820.

DOI: 10.1016/j.jallcom.2017.08.142

Google Scholar

[10] Z. W. Pan, Nanobelts of semiconducting oxides. Science, 291 (2001) 1947-1949.

Google Scholar

[11] J. Y. Lao, J. Y. Huang, D. Z. Wang, ZnO nanobridges and nanonails. Nano Letters, 3 (2003) 235-238.

DOI: 10.1021/nl025884u

Google Scholar

[12] J. Lao, J. Wen, J. Huang, Hierarchical ZnO nanostructures. Nano Letters, 2 (2002) 1287-1291.

Google Scholar

[13] M. H. Huang, Room-temperature ultraviolet nanowire nanolasers. Science, 292 (2001) 1897-1899.

Google Scholar

[14] S. Wang, P. Kuang, B. Cheng, ZnO hierarchical microsphere for enhanced photocatalytic activity. Journal of Alloys & Compounds, 741 (2018) 622-632.

DOI: 10.1016/j.jallcom.2018.01.141

Google Scholar

[15] M. Nafees, W. Liaqut, S. Ali S, Synthesis of ZnO/Al:ZnO nanomaterial: structural and band gap variation in ZnO nanomaterial by Al doping. Applied Nanoscience, 3 (2013) 49-55.

DOI: 10.1007/s13204-012-0067-y

Google Scholar

[16] H. Zhang, D. Yang, X. Ma, et al. Synthesis of flower-like ZnO nanostructures by an organic-free hydrothermal process. Nanotechnology, 15 (2004) 622-626.

DOI: 10.1088/0957-4484/15/5/037

Google Scholar

[17] S. Rani, P. Suri, P. K. Shishodia, et al. Synthesis of nanocrystalline ZnO powder via sol–gel route for dye-sensitized solar cells. Solar Energy Materials and Solar Cells, 2008, 92 (12):1639-1645.

DOI: 10.1016/j.solmat.2008.07.015

Google Scholar

[18] Y. Liu, D. Wang, Q. Peng, et al. Directly assembling ligand-free ZnO nanocrystals into three-dimensional mesoporous structures by oriented attachment. Inorganic Chemistry, 50 (2011) 5841-5847.

DOI: 10.1021/ic2009013

Google Scholar

[19] C. D. Wagner, L. H. Gale, R. H. Raymond, Two-dimensional chemical state plots: a standardized data set for use in identifying chemical states by x-ray photoelectron spectroscopy. Analytical Chemistry, 51 (1979) 466-482.

DOI: 10.1021/ac50040a005

Google Scholar

[20] J. C. C. Fan, J. B. Goodenough, X-ray Photoemission Spectroscopy Studies of Sn-Doped Indium Oxide Films. Journal of Applied Physics, 48 (1977) 3524-3531.

DOI: 10.1063/1.324149

Google Scholar

[21] I. G. Morozov, O. V. Belousova, D. Ortega, et al. Structural, optical, XPS and magnetic properties of Zn particles capped by ZnO nanoparticles. Journal of Alloys and Compounds, 633 (2015) 237-245.

DOI: 10.1016/j.jallcom.2015.01.285

Google Scholar

[22] H. Zhang, X. Lv, Y. Li, et al. P25-graphene composite as a high performance photocatalyst. Acs Nano, 4 (2010) 380-386.

DOI: 10.1021/nn901221k

Google Scholar

[23] S. Zhang, H. S. Chen, K. M. Postolek and Ping. Yang. ZnO nanoflowers with single crystal structure towards enhanced gas sensing and photocatalysis. Phys. Chem. Chem. Phys., 17 (2015) 30300-30306.

DOI: 10.1039/c5cp04860e

Google Scholar